
Author: Dr.P.Thiyagarajan, Dept. of Computer Science, Central University of Tamil Nadu,

Thiruvarur – 610 005

Mobile Application

Development
Author: Dr.P.Thiyagarajan

Assistant Professor & Head In-charge

Department of Computer Science

Central University of Tamil Nadu

Thiruvarur – 610 005

Email: thiyagu@cutn.ac.in

Author: Dr.P.Thiyagarajan, Dept. of Computer Science, Central University of Tamil Nadu,

Thiruvarur – 610 005

CC XIII – Mobile Application Development

UNIT I
Introduction- The Mobile Ecosystem: Operators - Networks - Devices - Platforms - Operating

Systems - Application Frameworks - Applications - Services

UNIT II
Mobile Devices Profiles - Options for development - Categories of Mobile Applications:

SMS - Mobile Websites - Mobile Web Widgets - Native Applications - Games - Utility Apps

– Location, Based Services(LBS) Apps - Informative Apps - Enterprise Apps

UNIT III
Mobile Information Architecture: Introduction - Sitemaps - Click Streams - Wireframes -

Prototyping - Architecture for Different Devices. Mobile Design: Interpreting Design –

Elements of Mobile Design - Mobile Design Tools - Designing for Different Device/ Screens

UNIT IV
J2ME Overview -J2ME Architecture and Development Environment- Small Computing

Device Requirements, Run-Time Environment, MIDlet Programming, Java Language for

J2ME, J2ME SDK, J2ME Wireless Toolkit

UNIT V
Case Study: Google Android: Introduction - Android Development Environment- evelopment

Framework- SDK, Eclipse - Emulator, Android AVD - Project Framework. Apple IOS - RIM

Blackberry - Samsung Bada - Nokia Symbian - Microsoft Windows Phone.

TEXT BOOKS:
1. Mobile Design and Development by Brian Fling, O’Reilly Media, Inc 2009

2. J2ME: The Complete Reference, James Keogh, Tata McGrawHill 2003

REFERENCE BOOKS:
1. Smart Phone and Next-Generation Mobile Computing by Pei Zheng and Lionel Ni,

Elseveir 2006

2. Beginning Android by Mark L. Murphy , Apress 2009

Author: Dr.P.Thiyagarajan, Dept. of Computer Science, Central University of Tamil Nadu,

Thiruvarur – 610 005

Unit 1 MOBILE ECOSYSTEM

1 Introduction: The Mobile Ecosystem, Operators, Networks

1-30 2 Devices: Platforms, Operating systems

3 Applications: Application frameworks, Applications, Services

Unit 2 MOBILE DEVICES PROFILES

4 Categories of Mobile Applications: SMS, Mobile Websites,

Mobile Web Widgets

31-76

5 Native Applications: Games, Utility Apps, Location Based

Services(LBS)

6 Apps: Informative Apps, Enterprise Apps

UNIT 3 MOBILE INFORMATION ARCHITECTURE

7 Introduction: Sitemaps, Click Streams, Wireframes, Prototyping,

Architecture

77-125

8 Mobile Design:Interpreting Design, Elements of Mobile Design

9 Mobile Design tools: Designing for different device, screen

Unit 4 J2ME

10 Introduction : J2ME architecture and development environment,

Small computing device requirements, Run-time environment ,

MIDlet programming

126-168

11 Languages: J2ME, J2ME Software Development Kits, J2ME

wireless toolkit

Unit 5 CASE STUDY

12 Introduction: Google Android Introduction, Android Application

Development

169-219 13 Development Framework: SDK, Eclipse, Emulator, Android

AVD

14 Project Framework: Apple IOS, RIM Blackberry, Samsung Bada,

Nokia Symbian, Microsoft Windows Phone

Author: Dr.P.Thiyagarajan, Dept. of Computer Science, Central University of Tamil Nadu,

Thiruvarur – 610 005

CONTENTS

Unit 1 MOBILE ECOSYSTEM 1-30

1.1 Contents of the unit

1.2 Introduction

1.3 Objectives

1.4 Introduction to Mobile system

1.4.1 The Mobile Ecosystem

1.4.2 Operators

1.4.3 Networks

1.5 Devices

1.5.1 Platforms

1.5.2 Operating systems

1.6 Mobile Applications

1.6.1 Application frameworks

1.6.2 Applications

1.6.3 Services

1.7 Check your progress Questions

1.8 Answer to Check your progress Questions

1.9 Summary

1.10 Key words

1.11 Self Assessment Questions

1.12 Further readings

Unit 2 MOBILE DEVICES PROFILES 31-76

2.1 Contents of the unit

2.2 Introduction

2.3 Objectives

2.4 Mobile Devices Profiles

2.4.1 Categories of Mobile Applications

2.4.2 SMS

2.4.3 Mobile Websites

2.4.4 Mobile Web Widgets

2.5 Native Applications

2.5.1 Games

2.5.2 Utility Apps

2.5.3 Location Based Services(LBS)

2.6 Apps

2.6.1 Informative Apps

2.6.2 Enterprise Apps

2.7 Check your progress Questions

2.8 Answer to Check your progress Questions

2.9 Summary

2.10 Key words

2.11 Self Assessment Questions

2.12 Further readings

Author: Dr.P.Thiyagarajan, Dept. of Computer Science, Central University of Tamil Nadu,

Thiruvarur – 610 005

UNIT 3 MOBILE INFORMATION ARCHITECTURE 77-125

3.1 Contents of the unit

3.2 Introduction

3.3 Objectives

3.4 Mobile Information Architecture

3.4.1 Sitemaps

3.4.2 Click Streams

3.4.3 Wireframes

3.4.4 Prototyping

3.4.5 Architecture

3.5 Mobile Design

3.5.1 Interpreting Design

3.5.2 Elements of Mobile Design

3.6 Mobile Design tools

3.6.1 Designing for different device

3.6.2 Designing for different screen

3.7 Check your Progress Questions

3.8 Answers to check your progress questions.

3.9. Summary

3.10. Key words

3.11 Self Assessment Questions and answers

3.12 Further Readings

Unit IV J2ME 126-168

4.1 Contents of the unit

4.2 Introduction

4.3 Objectives

4.4 J2ME architecture and development environment

4.4.1 Small computing device requirements

4.4.2 Run-time environment

4.4.3 MIDlet programming

4.5 J2ME Software Development Kits

4.6 J2ME wireless toolkit

4.7 Check your Progress Questions

4.8 Answers to check your progress questions.

4.9. Summary

4.10. Key words

4.11 Self Assessment Questions and answers

4.12 Further Readings

Author: Dr.P.Thiyagarajan, Dept. of Computer Science, Central University of Tamil Nadu,

Thiruvarur – 610 005

Unit V CASE STUDY 169-219

5.1 Contents of the unit

5.2 Introduction

5.3 Objectives

5.4 Introduction to Google Android

5.4.1 Google Android

5.4.2 Android Application Development

5.5 Development Framework

5.5.1 SDK

5.5.2 Eclipse

5.5.3 Emulator

5.5.4 Android AVD

5.6 Project Framework

5.6.1 Apple IOS

5.6.2 RIM Blackberry

5.6.3 Samsung Bada

5.6.4 Nokia Symbian

5.6.5 Microsoft Windows Phone

5.7 Check your Progress Questions

5.8 Answers to check your progress questions.

5.9. Summary

5.10. Key words

5.11 Self Assessment Questions and answers

5.12 Further Readings

 Model Question Paper

Author: Dr.P.Thiyagarajan, Dept. of Computer Science, Central University of

Tamil Nadu, Thiruvarur – 610 005.

1

UNIT 1 MOBILE ECOSYSTEM

1.1 Contents of the unit
1.1 Contents of the unit

1.2 Introduction

1.3 Objectives

1.4 Introduction to Mobile system

1.4.1 The Mobile Ecosystem

1.4.2 Operators

1.4.3 Networks

1.5 Devices

1.5.1 Platforms

1.5.2 Operating systems

1.6 Mobile Applications

1.6.1 Application frameworks

1.6.2 Applications

1.6.3 Services

1.7 Check your progress Questions

1.8 Answer to Check your progress Questions

1.9 Summary

1.10 Key words

1.11 Self Assessment Questions

1.12 Further readings

1.2. Introduction

 Mobile Ecosystem is collection of multiple operators, networks,

devices, operating system, applications, process and services by

companies.

 Mobile devices: Mobile phones, Tablets, Phablets, etc.

 Software: Operating system, Network protocols, development

tools, testing tools, etc.

 Companies: Device manufacturers, carrier, Apps stores,

development and testing companies. Etc.

 Data: SMS, contacts, bank transactions, etc.

 Mobile manufacturers: Samsung, Blackberry, Sony, Nokia,

Motorola, Windows Phone, etc.

 Operating system: IOS, Android, Blackberry OS, Symbian, etc.

Author: Dr.P.Thiyagarajan, Dept. of Computer Science, Central University of

Tamil Nadu, Thiruvarur – 610 005.

2

1.3. Objectives

 To study the history from telephone to smart phone.

 To understand the basic concepts of mobile system.

 To acquire more knowledge in mobile Ecosystem.

 Be familiar with network concepts related to mobile Ecosystem.

 To study different mobile operating system.

 To gain knowledge about different mobile platforms and

application development.

1.4 Introduction to Mobile system

A mobile phone is a wireless handheld device that allows users to

make and receive calls and to send text messages, among other features.

The earliest generation of mobile phones could only make and receive

calls. Today’s mobile phones, however, are packed with many additional

features, such as web browsers, games, cameras, video players and even

navigational systems.

A mobile phone may also be known as a cellular phone or simply a

cell phone. The original Mobile Devices and C The original Mobile

Devices and C ommunication was mmunication was designed for voice

applications (2G).

When the first mobile phones were introduced, their only function

was to make and receive calls, and they were so bulky it was impossible to

carry them in a pocket.

Later, mobile phones belonging to the Global System for Mobile

Communications (GSM) network became capable of sending and

receiving text messages. As these devices evolved, they became smaller

and more features were added, such as multimedia messaging service

(MMS), which allowed users to send and receive images. Most of these

MMS-capable devices were also equipped with cameras, which allowed

users to capture photos, add captions, and send them to friends and

relatives who also had MMS-capable phones.

Author: Dr.P.Thiyagarajan, Dept. of Computer Science, Central University of

Tamil Nadu, Thiruvarur – 610 005.

3

1.4.1 The Mobile Ecosystem

The smart phones become our inseparable companions today. It is

become part of human life. A smart phone is a mobile phone that can do

more than other phones. They work as a computer but are mobile devices

small enough to fit in a user's hand.

Smart phones include the following uses:

 Sending and receiving emails, text, photographs and multimedia

messages

 Registering contacts, calculator, currency, alarm, etc. functions

 Browsing the Internet using a mobile browser

 Playing games and Video chat

 point of sale terminal when paying for goods or services

 barcode scanning, creating high quality photographs or video

 Determining user's exact location utilizing GPS (global positioning

system) satellites

 Upto 1980, we used telephone to exchange voice information over

telephone lines. The traditional telephone is shown in figure 1-1

Figure 1-1 Traditional telephone

A cellphone is simply a telephone that doesn't need a landline

connection. It enables the user to make and receive phone calls. Some

cellphones also offer text messaging.

Author: Dr.P.Thiyagarajan, Dept. of Computer Science, Central University of

Tamil Nadu, Thiruvarur – 610 005.

4

A smartphone has more advanced features, including web

browsing, software applications and a mobile OS. In turn, a smartphone

also offers capabilities such as support for biometrics, video chatting,

digital assistants and much more.

Figure 1-2 A modern mobile phone – martphone

The following are some of the other key features of a smartphone:

 internet connectivity;

 a mobile browser;

 the ability to sync more than one email account to a device;

 embedded memrory;

 a hardware or software-based QWERTY keyboard;

 wireless synchronization with other devices, such as laptop or

desktop computers;

 the ability to download applications and run them independently;

 support for third-party applications;

Author: Dr.P.Thiyagarajan, Dept. of Computer Science, Central University of

Tamil Nadu, Thiruvarur – 610 005.

5

 the ability to run multiple applications simultaneously;

 touchscreen;

 Wi-Fi;

 a digital camera, typically with video capability;

 gaming;

 unified messaging; and

 GPS -- global positioning system.

The Evolution of Devices

Era Description Picture

The Brick Era The first era I call the

Brick Era (1973–

1988). basically

a corded receiver

connected to a

portable radio the size

(and weight) of a car

battery.

The Candy Bar Era The second era, the

Candy Bar Era (1988–

1998), represented one

of the more significant

leaps in mobile

technology.

Author: Dr.P.Thiyagarajan, Dept. of Computer Science, Central University of

Tamil Nadu, Thiruvarur – 610 005.

6

The Feature Phone

Era

The third era, the

Feature Phone Era

(1998–2008), wasn’t

nearly as radical a

technological

leap as the leap from

the Brick Era to the

Candy Bar Era, but it

was an important

evolution nonetheless.

The Smartphone Era The Smartphone Era

occurred at the same

time as the third and

fifth eras and spans

from around 2002 to

the present. sending an

SMS, taking a picture,

and accessing the

mobile web, larger

screen size, a

QWERTY keyboard

or stylus for input, and

Wi-Fi or another form

of high-speed wireless

connectivity.

The Touch Era crammed into smaller

and smaller

packages. Mobile

devices got smarter by

learning from desktop

computing, truly

becoming

personal computers,

but people weren’t

interested.

The Internet is actually a complex ecosystem made up of many

parts that must all work together seamlessly. When we enter a URL into a

web browser, we don’t think about everything that has to happen to see a

web page. When we send an email, we don’t care about all the servers,

Author: Dr.P.Thiyagarajan, Dept. of Computer Science, Central University of

Tamil Nadu, Thiruvarur – 610 005.

7

switches, and software that separate we from our recipient. Everything we

do on the Internet happens in fractions of a second. And we have the

perception that all of this happens for free.

If we talk to people unfamiliar with mobile, we might find that

they quickly assume that the mobile ecosystem is exactly like the Internet,

and that all the same rules apply. This couldn’t be further from the truth.

Mobile is an entirely unique ecosystem and, like the Internet, it is made up

of many different parts that must all work seamlessly together. However,

with mobile technology, the parts are different, and because we can use

mobile devices to access the Internet, that means that not only do we need

to understand the facets of the Internet, but we also need to understand the

mobile ecosystem.

To put it another way, think of the Internet as a great cloud in the

sky. When we want to pull something from it, we use a tool, like a piece of

software or device, to interact with it. This can include mobile devices,

which we tend to think of as tools. Although this image is partially correct,

it’s still missing a big piece of the puzzle. To continue the analogy, if the

Internet is a cloud, then the mobile ecosystem would be the atmosphere,

made up of many clouds, keeping the clouds from drifting off into space;

the Internet is just one of these clouds, albeit a very large one.

In case that isn’t confusing enough, people in mobile tend to refer

to everything related to mobile as “mobile.” This chapter looks at some of

the clouds in the sky and how each part plays into the ecosystem as a

whole. It also looks at how we can get started with mobile.

Think of the mobile ecosystem instead as a system of layers, as

shown in Figure 1-3. Each layer is reliant on the others to create a

seamless, end-to-end experience. Although not every piece of the puzzle is

included in every mobile product and service, for the majority of the time,

they seem to add complexity to our work, regardless of whether we

expressly put them there.

Author: Dr.P.Thiyagarajan, Dept. of Computer Science, Central University of

Tamil Nadu, Thiruvarur – 610 005.

8

Figure 1-3. The layers of the mobile ecosystem

The following sections expand on each of these layers and the roles

they play in the mobile ecosystem.

1.4.2 Operators

The base layer in the mobile ecosystem is the operator. Operators

go by many names, depending on what part of the world we happen to be

in or who we are talking to. Operators can be referred to as Mobile

Network Operators (MNOs); mobile service providers, wireless carriers,

or simply carriers; mobile phone operators; or cellular companies. In the

mobile community, we officially refer to them as operators, though in the

United States, there is a tendency to call them carriers.

Operators are what essentially make the entire mobile ecosystem

work. They are the gatekeepers to the kingdom. They install cellular

towers, operate the cellular network, make services (such as the Internet)

available for mobile subscribers, and they often maintain relationships

with the subscribers, handling billing and support, and offering subsidized

device sales and a network of retail stores.

The operator’s role in the ecosystem is to create and maintain a

specific set of wireless services over a reliable cellular network. That’s it.

However, to grow the mobile market over the past decade, the operator has

been required to take a greater role in the mobile ecosystem, doing much

more than just managing the network. For example, they have had to

Author: Dr.P.Thiyagarajan, Dept. of Computer Science, Central University of

Tamil Nadu, Thiruvarur – 610 005.

9

establish trust with subscribers to handle the billing relationship and to

offer devices, content, and services that often compete with their partners,

who are people like us and who want to create content and services for

mobile devices.

Unless we work for an operator, we likely curse their names, at

least behind their backs. The operator is viewed as an unfortunate

necessity in the mobile world. Often the mobile startups and companies

that succeed are the ones with the best “carrier relations man,” or person

with the best relationship to the operators.

Table 1-4 lists the rank, markets, technologies used, and subscriber

numbers for the world’s largest operators.

Table 1-4. World’s largest mobile operators

Rank Operator Markets Technology Subscriber

s (in

millions)

1 China

Mobile

China (including Hong

Kong) and Pakistan

GSM,

GPRS,

EDGE, TD-

SCDMA

436.12

2 Vodafone United Kingdom,

Germany, Italy, France,

Spain, Romania, Greece,

Portugal, Netherlands,

Czech Republic, Hungary,

Ireland, Albania, Malta,

Northern Cyprus, Faroe

Islands, India, United

States, South Africa,

Australia, New Zealand,

Turkey, Egypt, Ghana,

Fiji, Lesotho, and

Mozambique

GSM,

GPRS,

EDGE,

UMTS,

HSDPA

260.5

3 Telefónic

a

Spain, Argentina, Brazil,

Chile, Colombia, Ecuador,

El Salvador, Guatemala,

Mexico, Nicaragua,

Panama, Peru, Uruguay,

Venezuela, Ireland,

Germany, United

Kingdom, Czech

CDMA,

CDMA2000

1x, EV-DO,

GSM,

GPRS,

EDGE,

UMTS,

HSDPA

188.9

Author: Dr.P.Thiyagarajan, Dept. of Computer Science, Central University of

Tamil Nadu, Thiruvarur – 610 005.

10

Republic, Morocco, and

Slovakia

4 América

Móvil

United States, Argentina,

Chile, Colombia,

Paraguay, Uruguay,

Mexico, Puerto Rico,

Ecuador, Jamaica, Peru,

Brazil, Dominican

Republic, Guatemala,

Honduras, Nicaragua,

Ecuador, and El Salvador

CDMA,

CDMA2000

1x, EV-DO,

GSM,

GPRS,

EDGE,

UMTS,

HSDPA

172.5

5 Telenor Norway, Sweden,

Denmark, Hungary,

Montenegro, Serbia,

Russia, Ukraine, Thailand,

Bangladesh, Pakistan, and

Malaysia

GSM,

GPRS,

EDGE,

UMTS,

HSDPA

143.0

6 China

Unicom

China GSM,

GPRS

127.6

7 T-Mobile Germany, United States,

United Kingdom, Poland,

Czech Republic,

Netherlands, Hungary,

Austria, Croatia, Slovakia,

Macedonia, Montenegro,

Puerto Rico, and U.S.

Virgin Islands

GSM,

GPRS,

EDGE,

UMTS,

HSDPA

126.6

8 TeliaSon

era

Norway, Sweden,

Denmark, Finland,

Estonia, Latvia, Lithuania,

Spain, and Central Asia

GSM,

GPRS,

EDGE,

UMTS,

HSDPA

115.0

9 Orange France, United Kingdom,

Switzerland, Poland,

Spain, Romania,

Moldova, Slovakia,

Belgium, Liechtenstein,

Israel, Egypt, Ivory Coast,

Jordan, Cameroon,

Botswana, Madagascar,

Mali, Senegal, Mauritius,

Réunion, Martinique,

French Guiana, Saint Kitts

GSM,

GPRS,

EDGE,

UMTS,

HSDPA

111.8

Author: Dr.P.Thiyagarajan, Dept. of Computer Science, Central University of

Tamil Nadu, Thiruvarur – 610 005.

11

and Nevis, Dominica, and

Dominican Republic

10 MTS Russia, Ukraine, Belarus,

Uzbekistan,

Turkmenistan, and

Armenia

GSM,

GPRS,

EDGE,

UMTS

91.7

11 MTN Group Afghanistan,

Benin, Botswana,

Cameroon, Republic of

Congo, Côte d’Ivoire,

Cyprus, Ghana, Guinea

Bissau, Republic of

Guinea, Iran, Liberia,

Nigeria, Rwanda, South

Africa, Sudan, Swaziland,

Syria, Uganda, Yemen,

and Zambia

GSM,

GPRS,

EDGE,

UMTS,

HSDPA,

HSUPA

80.7

12 AT&T United States, Puerto

Rico, and U.S. Virgin

Islands

GSM,

GPRS,

EDGE,

UMTS,

HSDPA

74.9

13 Bharti

Airtel

India, Seychelles, Jersey,

Guernsey, and Sri Lanka

GSM,

GPRS,

EDGE

72.0

14 Verizon

Wireless

United States CDMA2000

1x, EV-DO

70.8

15 SingTel Singapore, Australia,

India, Indonesia,

Thailand, Philippines,

Bangladesh, and Pakistan

GSM,

UMTS,

HSDPA

70.7

16 Telecom Italy, Brazil, San Marino,

and Vatican City

GSM,

GPRS,

EDGE,

UMTS,

HSDPA

70.6

17 Etisalat Afghanistan, Benin,

Burkina Faso, Central

African Republic, the

Ivory Coast, Egypt,

Gabon, Indonesia, Niger,

Nigeria, Pakistan, Saudi

Arabia, Sudan, Tanzania,

GSM,

GPRS,

EDGE,

UMTS,

HSDPA

63.0

Author: Dr.P.Thiyagarajan, Dept. of Computer Science, Central University of

Tamil Nadu, Thiruvarur – 610 005.

12

Togo, and United Arab

Emirates

18 Orascom Algeria, Bangladesh,

Egypt, Pakistan, Tunisia,

and Zimbabwe

GSM,

GPRS,

EDGE

62.9

19 VimpelC

om

Russia, Kazakhstan,

Ukraine, Uzbekistan,

Tajikistan, Georgia,

Armenia, Vietnam, and

Cambodia

GSM,

GPRS,

UMTS

57. 8

20 NTT

docomo

Japan and Bangladesh GSM,

GPRS, PDC

FOMA,

HSDPA

53.5

Although most operators are interested in innovation in the

wireless marketplace, they have been known to strangle startups with

impossible requirements, such as supporting too many devices or

seemingly ridiculous certification processes and bad pricing models.

The days of impossible requirements are changing, however.

Today’s mobile startups have learned the lessons of the companies that

came before them that tried to dance with the devil and lost everything.

Many look to the successes of Web 2.0–era startups that were able to start

with little infrastructure and quickly grow successful businesses. These

startups figured out how to duplicate the phenomenon of mobile,

bypassing the operators completely (something this book tells we how to

do).

We can compare operators to Big Oil. They both have this thing

they know everyone wants, and therefore they can make a lot of money

from it. They know they have a limited amount of time to make it. With

oil, it is the depleted resources and competition of green energy sources; in

wireless, it’s the growth of competing wireless technologies, such as Wi-

Fi, WiMAX, ultra-wide broadband, and whitespace frequencies.

As competing technologies become more mature, they can’t charge

as much as they did when they first came out. As consumer options in the

market mature, both the oil industry and operators must realize that they

can’t continue to monopolize their markets. They must realize that they

don’t control their industries; they are only a player in them.

Unfortunately, in the meantime, both of these industries will continue to

force us to pay an artificially inflated cost to play.

Author: Dr.P.Thiyagarajan, Dept. of Computer Science, Central University of

Tamil Nadu, Thiruvarur – 610 005.

13

1.4.3 Networks

A cellular network or mobile network is a communication network

where the last link is wireless. The network is distributed over land areas

called "cells", each served by at least one fixed-location transceiver, but

more normally, three cell sites or base transceiver stations. These base

stations provide the cell with the network coverage which can be used for

transmission of voice, data, and other types of content. A cell typically

uses a different set of frequencies from neighbouring cells, to avoid

interference and provide guaranteed service quality within each cell.

When joined together, these cells provide radio coverage over a

wide geographic area. This enables numerous portable transceivers (e.g.,

mobile phones, tablets and laptops equipped with mobile broadband

modems, pagers, etc.) to communicate with each other and with fixed

transceivers and telephones anywhere in the network, via base stations,

even if some of the transceivers are moving through more than one cell

during transmission.

Operators operate wireless networks. Remember that cellular

technology is just a radio that receives a signal from an antenna. The type

of radio and antenna determines the capability of the network and the

services we can enable on it.

The vast majority of networks around the world use the GSM

standard (see Table for an explanation of these acronyms), using GPRS or

GPRS EDGE for 2G data and UMTS or HSDPA for 3G. We also have

CDMA (Code Division Multiple Access) and its 2.5G hybrid CDMA2000,

which offers greater coverage than its more widely adopted rival. So in

places like the United States or China, where people are more spread out,

CDMA is a great technology. It uses fewer towers, giving subscribers

fewer options as they roam networks.

The first commercial cellular network, the 1G generation, was

launched in Japan by Nippon Telegraph and Telephone (NTT) in 1979,

initially in the metropolitan area of Tokyo. Within five years, the NTT

network had been expanded to cover the whole population of Japan and

became the first nationwide 1G network. It was an analog wireless

network.

Table 1-5. GSM mobile network evolutions

Author: Dr.P.Thiyagarajan, Dept. of Computer Science, Central University of

Tamil Nadu, Thiruvarur – 610 005.

14

2G Second generation of

mobile phone standards

and technology

Theoretical max data

speed

GSM Global System for Mobile

communications

12.2 KB/sec

GPRS General Packet Radio

Service

Max 60 KB/sec

EDGE Enhanced Data rates for

GSM Evolution

59.2 KB/sec

HSCSD High-Speed Circuit-

Switched Data

57.6 KB/sec

3G Third generation of

mobile phone standards

and technology

Theoretical max data

speed

W-CDMA Wideband Code Division

Multiple Access

14.4 MB/sec

UMTS Universal Mobile

Telecommunications

System

3.6 MB/sec

UMTS-TDD UMTS +Time Division

Duplexing

16 MB/sec

TD-CDMA Time Divided Code

Division Multiple Access

16 MB/sec

HSPA High-Speed Packet Access 14.4 MB/sec

HSDPA High-Speed Downlink

Packet Access

14.4 MB/sec

HSUPA High-Speed Uplink Packet

Access

5.76 MB/sec

Like all things in mobile, we like to merge a lot of technology into

overly simplistic terms, which tends to create a lot of confusion. So when

we say 3G, for example, we often aren’t talking about just the capabilities

of the network, but the devices that run on it.

Although the core technology that empowers voice communication

has stayed relatively the same, network generations are most often used to

describe the data speeds the network is capable of delivering.

1.5 Devices

Author: Dr.P.Thiyagarajan, Dept. of Computer Science, Central University of

Tamil Nadu, Thiruvarur – 610 005.

15

What we call phones, the mobile industry calls handsets or

terminals. These are terms that I think are becoming outdated with the

emergence of wireless devices that rely on operator networks, but do not

make phone calls. The number of these “other” devices is a small piece of

the overall pie right now, but it’s growing rapidly.

Let’s focus on the biggest slice of the device pie—mobile phones. As of

2008, there are about 3.6 billion mobile phones currently in use around the

world; just more than half the planet’s population has a mobile phone (see

Figure 2-2).

Most of these devices are feature phones, making up the majority

of the marketplace. Smartphones make up a small sliver of worldwide

market share and maintain a healthy percentage in the United States and

the European Union; smartphone market share is growing with the

introduction of the iPhone and devices based on the Android platform. As

next-generation devices become a reality, the distinction between feature

phones and smartphones will go away.

In the next few years, feature phones will largely be located in

emerging and developing markets. Figure 1-4 shows a breakdown of

devices.

Figure 1-4. Mobile devices around the world

Author: Dr.P.Thiyagarajan, Dept. of Computer Science, Central University of

Tamil Nadu, Thiruvarur – 610 005.

16

Figure 1-5. Breakdown of devices

Most mobile devices are subsidized in some form or another.

Operators sell devices at a severely discounted price, often one-third or

less of the actual cost of the device. This enables the operators to lock the

devices to their networks. They can then preload onto the device content

and services that are beneficial to themselves in exchange for lower price

points, encouraging subscribers to upgrade to new devices with new

capabilities. Subsidization means that devices need to be provisioned (or

customized) to operators’ individual requirements. Provisioning

dramatically increases the number of devices released every year, with

each device being slightly different from the other.

The sheer number of devices is both a blessing and a curse to the

mobile industry. On the one hand, the magnitude of the mobile market is

huge. It is one of the largest digital mediums mankind has ever seen. On

the other hand, so many devices means adapting to those devices—not to

mention painful and costly development cycles.

This brings us to the greatest challenge the mobile ecosystem

currently faces: device fragmentation, a term used to describe how mobile

devices interpret industry specifications differently, causing different

mobile devices to display content inconsistently. Despite what we may

know or have heard, we can take a deep breath and relax. Device

fragmentation is a topic we will clear up completely in the following

chapters.

Author: Dr.P.Thiyagarajan, Dept. of Computer Science, Central University of

Tamil Nadu, Thiruvarur – 610 005.

17

1.5.1 Platforms

 A mobile platform’s primary duty is to provide access to the

devices. To run software and services on each of these devices, we need a

platform, or a core programming language in which all of our software is

written. Like all software platforms, these are split into three categories:

licensed, proprietary, and open source.

Licensed

Licensed platforms are sold to device makers for nonexclusive

distribution on devices. The goal is to create a common platform of

development Application Programming Interfaces (APIs) that work

similarly across multiple devices with the least possible effort required to

adapt for device differences, although this is hardly reality.

Following are the licensed platforms:

Platforms Description about the mobile

Platforms

Java Micro Edition (Java ME)

Formerly known as J2ME, Java ME

is by far the most predominant

software platform of any kind in the

mobile ecosystem. It is a licensed

subset of the Java platform and

provides a collection of Java APIs

for the development of software for

resource constrained devices such

as phones.

Binary Runtime Environment for

Wireless (BREW)

BREW is a licensed platform

created by Qualcomm for mobile

devices, mostly for the U.S. market.

It is an interface-independent

platform that runs a variety of

application frameworks, such as

C/C++, Java, and Flash Lite.

Windows Mobile Windows Mobile is a licensable and

compact version of the Windows

operating system, combined with a

suite of basic applications for

mobile devices that is based on the

Microsoft Win32 API.

Author: Dr.P.Thiyagarajan, Dept. of Computer Science, Central University of

Tamil Nadu, Thiruvarur – 610 005.

18

LiMo LiMo is a Linux-based mobile

platform created by the LiMo

Foundation. Although Linux is

open source, LiMo is a licensed

mobile platform used for mobile

devices. LiMo includes SDKs for

creating Java, native, or mobile web

applications using the WebKit

browser framework

Proprietary

Proprietary platforms are designed and developed by device

makers for use on their devices. They are not available for use by

competing device makers. These include:

Palm Palm uses three different proprietary platforms. Their first

and most recognizable is the Palm OS platform based on the

C/C++ programming language; this was initially developed

for their Palm Pilot line, but is now used in low-end

smartphones such as the Centro line. As Palm moved into

higher-end smartphones, they started using the Windows

Mobile-based platform for devices like the Treo line. The

most recent platform is called webOS, is based on the

WebKit browser framework, and is used in the Prē line.

BlackBerry Research in Motion maintains their own proprietary Java-

based platform, used exclusively by their BlackBerry

devices.

iPhone Apple uses a proprietary version of Mac OS X as a platform

for their iPhone and iPod touch line of devices, which is

based on Unix.

Open Source

Open source platforms are mobile platforms that are freely available for

users to download, alter, and edit. Open source mobile platforms are newer

and slightly controversial, but they are increasingly gaining traction with

device makers and developers. Android is one of these platforms. It is

developed by the Open Handset Alliance, which is spearheaded by

Google. The Alliance seeks to develop an open source mobile platform

based on the Java programming language.

Author: Dr.P.Thiyagarajan, Dept. of Computer Science, Central University of

Tamil Nadu, Thiruvarur – 610 005.

19

1.5.2 Operating Systems

It used to be that if a mobile device ran an operating system, it was

most likely considered a smartphone. But as technology gets smaller, a

broader set of devices supports operating systems.

Operating systems often have core services or toolkits that enable

applications to talk to each other and share data or services. Mobile

devices without operating systems typically run “walled” applications that

do not talk to anything else.

Although not all phones have operating systems, the following are

some of the most common:

Operating

system

Features of operating system

Symbian Symbian OS is a open source operating system designed

for mobile devices, with associated libraries, user interface

frameworks, and reference implementations of common

tools.

Windows Mobile Windows Mobile is the mobile operating system

that runs on top of the Windows Mobile platform.

Palm OS Palm OS is the operating system used in Palm’s lower-end

Centro line of mobile phones.

Linux The open source Linux is being increasingly used as an

operating system to power smartphones, including

Motorola’s RAZR2.

Mac OS X A specialized version of Mac OS X is the operating

system used in Apple’s iPhone and iPod touch.

Android Android runs its own open source operating system, which

can be customized by users, operators and device

manufacturers.

We might notice that many of these operating systems share the

same names as the platforms on which they run. Mobile operating systems

are often bundled with the platform they are designed to run on.

Author: Dr.P.Thiyagarajan, Dept. of Computer Science, Central University of

Tamil Nadu, Thiruvarur – 610 005.

20

1.6 Mobile Applications

A mobile application, also referred to as a mobile app or simply an

app, is a computer program or software application designed to run on a

mobile device such as a phone, tablet, or watch. Apps were originally

intended for productivity assistance such as email, calendar, and contact

databases, but the public demand for apps caused rapid expansion into

other areas such as mobile games, factory automation, GPS and location-

based services, order-tracking, and ticket purchases, so that there are now

millions of apps available.

Apps are generally downloaded from application distribution

platforms which are operated by the owner of the mobile operating system,

such as the App Store (iOS) or Google Play Store. Some apps are free, and

others have a price, with the profit being split between the application's

creator and the distribution platform. Mobile applications often stand in

contrast to desktop applications which are designed to run on desktop

computers, and web applications which run in mobile web browsers rather

than directly on the mobile device.

Native app

All apps targeted toward a particular mobile platform are known as

native apps. Therefore, an app intended for Apple device do not run in

Android devices. As a result, most businesses develop apps for multiple

platforms. The main purpose for creating such apps is to ensure best

performance for a specific mobile operating system.

While developing native apps, professionals incorporate best-in-

class user interface modules. This accounts for better performance,

consistency and good user experience. Users also benefit from wider

access to application programming interfaces and make limitless use of all

apps from the particular device. Further, they also switch over from one

app to another effortlessly.

Hybrid app

The concept of the hybrid app is a mix of native and web-based

apps. Apps developed using Xamarin, React Native, Sencha Touch and

other similar technology fall into this category.

Author: Dr.P.Thiyagarajan, Dept. of Computer Science, Central University of

Tamil Nadu, Thiruvarur – 610 005.

21

These are made to support web and native technologies across

multiple platforms. Moreover, these apps are easier and faster to develop.

It involves use of single code base which works in multiple mobile

operating systems.

Despite such advantages, hybrid apps exhibit lower performance.

Often, apps fail to bear the same look-and-feel in different mobile

operating systems.

Web-based app

A web-based app is coded in HTML5, CSS or JavaScript. Internet

access is required for proper behavior and user-experience of this group of

apps.

These apps may capture minimum memory space in user devices

compared to native and hybrid apps. Since all the personal databases are

saved on the Internet servers, users can fetch their desired data from any

device through the Internet.

1.6.1 Application Frameworks

Often, the first layer the developer can access is the application

framework or API released by one of the companies mentioned already.

The first layer that we have any control over is the choice of application

framework.

Application frameworks often run on top of operating systems,

sharing core services such as communications, messaging, graphics,

location, security, authentication, and many others.

Application

frameworks

Decription

Java Applications written in the Java ME framework can

often be deployed across the majority of Java-based

devices, but given the diversity of device screen size

and processor power, cross-device deployment can be

a challenge. Most Java applications are purchased and

distributed through the operator, but they can also be

downloaded and installed via cable or over the air.

S60 The S60 platform, formerly known as Series 60, is the

application platform for devices that run the Symbian

Author: Dr.P.Thiyagarajan, Dept. of Computer Science, Central University of

Tamil Nadu, Thiruvarur – 610 005.

22

OS. S60 is often associated with Nokia devices—

Nokia owns the platform—but it also runs on several

non-Nokia devices. S60 is an open source framework.

S60 applications can be created in Java, the Symbian

C++ framework, or even Flash Lite.

BREW Applications written in the BREW application

framework can be deployed across the majority of

BREW-based devices, with slightly less cross-device

adaption than other frameworks. However BREW

applications must go through a costly and timely

certification process and can be distributed only

through an operator.

Flash Lite Adobe Flash Lite is an application framework that

uses the Flash Lite and ActionScript frameworks to

create vector-based applications. Flash Lite

applications can be run within the Flash Lite Player,

which is available in a handful of devices around the

world. Flash Lite is a promising and powerful

platform, but there has been some difficulty getting it

on devices. A distribution service for applications

written in Flash Lite is long overdue.

Windows

Mobile

Applications written using the Win32 API can be

deployed across the majority of Windows Mobile-

based devices. Like Java, Windows Mobile

applications can be downloaded and installed over the

air or loaded via a cable-connected computer.

Cocoa Touch Cocoa Touch is the API used to create native

applications for the iPhone and iPod touch. Cocoa

Touch applications must be submitted and certified by

Apple before being included in the App Store. Once in

the App Store, applications can be purchased,

downloaded, and installed over the air or via a cable-

connected computer.

Android SDK The Android SDK allows developers to create native

applications for any device that runs the Android

platform. By using the Android SDK, developers can

write applications in C/C++ or use a Java virtual

machine included in the OS that allows the creation of

applications with Java, which is more common in the

mobile ecosystem.

Web Runtimes

(WRTs)

Nokia, Opera, and Yahoo! provide various Web

Runtimes, or WRTs. These are meant to be

miniframeworks, based on web standards, to create

Author: Dr.P.Thiyagarajan, Dept. of Computer Science, Central University of

Tamil Nadu, Thiruvarur – 610 005.

23

mobile widgets. Both Opera’s and Nokia’s WRTs

meet the W3C-recommended specifications for mobile

widgets. Although WRTs are very interesting and

provide access to some device functions using mobile

web principles, I’ve found them to be more complex

than just creating a simple mobile web app, as they

force the developer to code within an SDK rather than

just code a simple web app. And based on the number

of mobile web apps written for the iPhone versus the

number written for other, more full-featured WRTs, It

is a move in the right direction.

WebKit With Palm’s introduction of webOS, a mobile

platform based on WebKit, and given its

predominance as a mobile browser included in mobile

platforms like the iPhone, Android, and S60, and that

the vast majority of mobile web apps are written

specifically for WebKit, I believe we can now refer to

WebKit as a mobile framework in its own right.

WebKit is a browser technology, so applications can

be created simply by using web technologies such as

HTML, CSS, and JavaScript. WebKit also supports a

number of recommended standards not yet

implemented in many desktop browsers. Applications

can be run and tested in any WebKit browser, desktop,

or mobile device

The Web The Web is the only application framework that works

across virtually all devices and all platforms. Although

innovation and usage of the Web as an application

framework in mobile has been lacking for many years,

increased demand to offer products and services

outside of operator control, together with a desire to

support more devices in shorter development cycles,

has made the Web one of the most rapidly growing

mobile application platforms to date.

1.6.2 Applications

Application frameworks are used to create applications, such as a

game, a web browser, a camera, or media player. Although the

frameworks are well standardized, the devices are not. The largest

challenge of deploying applications is knowing the specific device

attributes and capabilities.

Author: Dr.P.Thiyagarajan, Dept. of Computer Science, Central University of

Tamil Nadu, Thiruvarur – 610 005.

24

For example, if we are creating an application using the Java ME

application framework, we need to know what version of Java ME the

device supports, the screen dimensions, the processor power, the graphics

capabilities, the number of buttons it has, and how the buttons are

oriented. Multiply that by just a few additional handsets and we have

hundreds of variables to consider when building an application. Multiply it

by the most popular handsets in a single market and we can easily have a

thousand variables, quickly dooming our application’s design or

development.

Although mobile applications can typically provide an excellent

user experience, it almost always comes at a fantastic development cost,

making it nearly impossible to create a scalable product that could

potentially create a positive return on investment.

A common alternative these days is creating applications for only

one platform, such as the iPhone or Android. By minimizing the number

of platforms the developer has to support and utilizing modern application

frameworks, the time and cost of creation go down significantly. This

strategy may be perfectly acceptable to many, but what about the rest of

the market? Surely people without a more costly smartphone should be

able to benefit from mobile applications, too.

Many see the web browser as the solution to this problem and the

savior from the insanity of deploying multidevice applications. The mobile

web browser is an application that renders content that is device-,

platform-, and operating-system-independent. The web browser knows its

limitations, enabling content to scale gracefully across multiple screen

sizes. However, like all applications, mobile web browsers suffer from

many of the same device fragmentation problems.

We could consider the Motorola RAZR to be the epitome of the

mobile ecosystem of yesterday. It’s been provisioned to numerous

operators around the world. It’s the perfect example not just of how crazy

deploying mobile applications to devices can be, but also of just how bad

mobile web browser fragmentation can be. It is a highly prolific device

and one that is often recommended for people to support, due to its market

penetration. But that is much easier said than done.

If we look at the WURFL database (an open source device

repository that is discussed later in this book), we can see that the V3, the

real name of the RAZR, has an Openwave 6.2.3.2 web browser. The

Author: Dr.P.Thiyagarajan, Dept. of Computer Science, Central University of

Tamil Nadu, Thiruvarur – 610 005.

25

V3/I/R had the Openwave 6.2.3.4.C.1.109 browser; the V3M/V9M had the

Teleca Obigo 4.0 browser; the V3X had the Openwave 6.2.3.1.C. 1.112

browser; the V3M had the Openwave 6.2.3.1.C.1.115 browser; the V3XXI

had the Opera 8.0 browser; and the V8 had the Opera 8.5 browser. This

isn’t even half the list!

From the consumer and business perspective, these are all

Motorola RAZRs. But in terms of supporting the RAZR, these might as

well be seven different devices. Each of these RAZRs carries very

different versions of common applications, each customized for the

operator on which they are intended to work. When a device is sold to an

operator, it is provisioned (customized) to their requirements. This means

the operators will often put customized applications on each of the devices

sold. With the example of the RAZR, every operator had it and every

operator put a different web browser on it. To make matters worse, the

RAZRs, like most phones, are not field-refreshable, meaning that we can’t

update the software, upgrade the applications, or eliminate bugs.

For example, if a device manufacturer makes a device called the

MDv1, they must strike a deal with an operator if they want to preload an

operator store application, a different web browser, and bowling game.

The device is sold as the MDv1.1. The operator sells the devices, or worse,

gives them away for free. A couple hundred thousand of them go out into

the marketplace before a glitch in the hardware is detected, such as

dropped calls. Because the device cannot be upgraded by cable or over the

air, the operator stops selling the MDv1.1, but seeing that they have a hit,

they quickly replace it with the MDv1.1.1. The whole process is repeated

as it is provisioned to each operator. Suddenly, there is an MDv1.2, an

MDv1.3, an MDv1.4, and so on. Then we have the next generations—the

MDv1.2.1, the MDv1.3.1, the MDv1.4.1, and so on, spreading like a virus.

This is essentially what causes device fragmentation, making application

development a costly and timely endeavor.

1.6.3 Services

Finally, we come to the last layer in the mobile ecosystem:

services. Services include tasks such as accessing the Internet, sending a

text message, or being able to get a location—basically, anything the user

is trying to do. What makes the mobile environment such a complicated

space to design and develop for are these layers, which the user must wade

through in order to accomplish a simple task like “I want to send a text

message,” “I want to get on the Web,” and “I want to access Google.” The

Author: Dr.P.Thiyagarajan, Dept. of Computer Science, Central University of

Tamil Nadu, Thiruvarur – 610 005.

26

user has so many opportunities for failure that creating a valuable

experience is virtually impossible.

How do everyday people use their mobile devices? What are their

impressions of the mobile web? Here is some of the consistent feedback

we might hear if we ask these questions:

 “It’s crap.”

 “I don’t use the mobile web, just because it’s awful.”

 “It costs too much.”

 “I don’t know where my browser is.”

 “I don’t know how to enter the URL.”

 “I want to go to Wikipedia, but I don’t know what to do.”

 “How do I check my email?”

That is, of course, only if we are old—past our early 30s. The wenger we

are, the more likely we are rely on mobile services for daily information.

Earlier generations— those born since the birth of the Internet—have a

unique talent for being able to figure out complicated informational

spaces. They are more patient with technology and more apt to explore

new methods of accomplishing tasks. And although one day the weth of

today will inherit the digital world, for the time being, the mobile

ecosystem is a complicated, fragmented, political nightmare.

If you were an entrepreneur looking to create mobile services,

knowing what you know about mobile, you would run away, fast. you

would probably open a restaurant, which would likely have a higher

chance of success. But we’ve already seen the future of mobile

development, in the form of the iPhone. The iPhone attempts to solve

many of the problems facing the mobile ecosystem, from how people

interact with their phones, to where we buy our phones, to what type of

applications we will pay money for, to the level of technology standards

we can support on constrained devices. What makes the iPhone special is

how it attempts change on virtually all fronts, something no other device,

or company for that matter, has been able to do previously.

Now Apple has done it, the gates are wide open for anyone. People

in the industry aren’t as jaded anymore, and there is a feeling of

excitement and optimism. Although many of the problems in the mobile

ecosystem are yet to be fixed and we still have plenty of nonsense to

contend with, we can see the light. We can see the path to innovation, to

creating applications and services that can quite literally reach the entire

planet and quite possibly change the world. It begins here right now.

Author: Dr.P.Thiyagarajan, Dept. of Computer Science, Central University of

Tamil Nadu, Thiruvarur – 610 005.

27

1.7 Check your progress Questions

1. The mobile ecosystem consisting of

a) Network b) Operating systems

c) Devices d) All the above

2. Which one of the following is the second layer of mobile ecosystem

architecture?

a) Network b) Operating systems

c) Devices d) Services

3. Which one of the following is not a 3G network?

a) W-CDMA b) UMTS

c) UMTS-TDD d) GSM

4. Find out the odd one

a) Symbian b) Windows

c) Android d) JAVA

5. Mobile platforms are primary split into three categories. They are

 a) licensed, proprietary, and open source.

 b) licensed, customized, and open source.

 c) customized, exportable and open source.

 a) customized, prioritized and open source.

 6. Application frameworks often run on top of ________.

a) Network b) Operating systems

c) Devices d) Services

1.8 Answer to Check your progress Questions

1. d) All the above

2. a) Network

3. d) GSM

4. d) JAVA

5. a) licensed, proprietary, and open source.

6. b) Operating systems

Author: Dr.P.Thiyagarajan, Dept. of Computer Science, Central University of

Tamil Nadu, Thiruvarur – 610 005.

28

1.9 Summary

Mobile Ecosystem is collection of multiple operators, networks,

devices, operating system, applications, process and services by

companies. Operators can be referred to as mobile network operators,

mobile service providers, wireless carriers, or simply mobile phone

operators or cellular companies.

GSM, GPRS, EDGE, and HSCSD are 2G networks. W-CDMA,

UMTS, UMTS-TDD, TD-CDMA, HSPA, HSDPA, and HSUPA are 3G

networks.

Feature phones and Smartphones are mostly used Mobile devices

around the world. A mobile platform’s primary duty is to provide access to

the devices. To run software and services on each of these devices, we

need a platform, or a core programming language in which all of our

software is written.

Java Micro Edition (Java ME), Binary Runtime Environment for

Wireless (BREW), Windows Mobile, LiMo, are popular mobile platforms.

Proprietary platforms are designed and developed by device makers for

use on their devices. Palm, BlackBerry, and iPhone are Proprietary

platforms. Open source platforms are mobile platforms that are freely

available for users to download, alter, and edit. Android is one of these

platforms.

Operating systems often have core services or toolkits that enable

applications to talk to each other and share data or services. Symbian,

Windows, Palm OS, Linux, Mac OS, Android are popular operating

systems.

Application frameworks often run on top of operating systems,

sharing core services such as communications, messaging, graphics,

location, security, authentication, and many others. Application

frameworks are used to create applications, such as a game, a web

browser, a camera, or media player.

Java, S60, BREW, Flash Lite, Windows Mobile, Cocoa Touch,

Android SDK, Web Runtimes, WebKit, and The Web are The Application

frameworks. Services include tasks such as accessing the Internet, sending

a text message, or being able to get a location.

Author: Dr.P.Thiyagarajan, Dept. of Computer Science, Central University of

Tamil Nadu, Thiruvarur – 610 005.

29

1.10 Key words

Mobile Ecosystem, Operators, Networks, Devices, Platforms,

Operating systems, Application frameworks ,Applications, Services,

Symbian, Windows, Palm OS, Linux, Mac OS, Android.

1.11 Self Assessment Questions

Short Answer Questions

1. What do we mean by mobile ecosystems?

2. What are the types of Mobile Devices?

3. List the uses of mobile application.

4. How the networks provide support to devices?

5. List out some platforms to build mobile application.

6. Write the various mobile operating systems.

7. Give the reasons to build Mobile Application.

8. Write few services of mobile ecosystems.

Long Answer Questions

1. Explain The Mobile Ecosystem with the following concepts

a) Operators

b) Networks

c) Devices

d) Platforms

e) Operating systems

f) Application frameworks

g) Applications

h) Services

2. Discuss the application frameworks of the mobile ecosystem in

detail.

3. Explain the device details covered in mobile ecosystem.

4. Draw the mobile ecosystem architecture and explain each

component clearly.

Author: Dr.P.Thiyagarajan, Dept. of Computer Science, Central University of

Tamil Nadu, Thiruvarur – 610 005.

30

1.12 Further readings

1. Mobile Design and Development by Brian Fling, O’Reilly Media, Inc

2009

2. J2ME: The Complete Reference, James Keogh, Tata McGrawHill

2003

3. H. Lashkari, M. Moradhaseli, Mobile operating systems and

programming: mobile communications, VDM Verlag Dr. Muller, 2011

4. http://opengardensblog.futuretext.com/archives/2008/06/iphone_vs_sym

bi_1.html

5. http://www.isecpartners.com/files/iSEC_Securing_Android_Apps.pdf

6. http://www.ibm.com/developerworks/architecture/library/wi-arch23.html

Author: Dr.P.Thiyagarajan, Dept. of Computer Science, Central University of

Tamil Nadu, Thiruvarur – 610 005.

31

UNIT 2 MOBILE DEVICES PROFILES

2. 1 Contents of the unit
2.1 Contents of the unit

2.2 Introduction

2.3 Objectives

2.4 Mobile Devices Profiles

2.4.1 Categories of Mobile Applications

2.4.2 SMS

2.4.3 Mobile Websites

2.4.4 Mobile Web Widgets

2.5 Native Applications

2.5.1 Games

2.5.2 Utility Apps

2.5.3 Location Based Services(LBS)

2.6 Apps

2.6.1 Informative Apps

2.6.2 Enterprise Apps

2.7 Check your progress Questions

2.8 Answer to Check your progress Questions

2.9 Summary

2.10 Key words

2.11 Self Assessment Questions

2.12 Further readings

2.2 Introduction

A mobile device plays a vital role in every human life. There are

several mobile application medium types. More than billions of mobile

applications such as gaming app, utility app, and location based apps are

used by people.

The most basic mobile application is an Short message

service(SMS) application. It can be integrated with many other mobile

application types. There are lots of SMS mobile alert applications.

A mobile game is a game played on a feature phone, smart phone,

tablet, smart watch, PDA, portable media player or graphing calculator.

The earliest known game on a mobile phone was a Tetris.

Author: Dr.P.Thiyagarajan, Dept. of Computer Science, Central University of

Tamil Nadu, Thiruvarur – 610 005.

32

The mobile web refers to browser-based World Wide Web services

accessed from handheld mobile devices, such as smart phones or feature

phones, through a mobile or other wireless network.

A location-based service is the name for a general class of policies

in software-level services that provide for accessing data, files, pipes,

memory objects, streams and other or online services.

 Informative apps provide information for best learning. There are

several free learning best apps on Android and iOS Platform. Enterprise

apps target a wide range of industries and can integrate with office,

purchase, sales and customer service processes.

2.3. Objectives

 To study varies categories of mobile applications.

 Be familiar with types of mobile medium.

 To understand the basic concepts of SMS and mobile apps using

SMS service.

 To acquire more knowledge in mobile websites.

 Be familiar with native mobile apps.

 To gain knowledge about different location based services.

 To study different Informative and Enterprise apps

2.4 Mobile Devices Profiles

Short for Mobile Information Device Profile (MIDP). MIDP is a

set of J2ME APIs that define how software applications interface with

cellular phones. Mobile Information Device Profile (MIDP) is a

specification published for the use of Java on embedded devices such as

mobile phones and PDAs. MIDP is part of the Java Platform, Micro

Edition (Java ME) framework and sits on top of Connected Limited

Device Configuration (CLDC), a set of lower level programming

interfaces. MIDP was developed under the Java Community Process.

Author: Dr.P.Thiyagarajan, Dept. of Computer Science, Central University of

Tamil Nadu, Thiruvarur – 610 005.

33

2.4.1 Categories of Mobile Applications

Introduction

 The mobile ecosystem is a large and deep pool. Mobile

applications aren’t that much different from boats in this seafaring

example. You have a number of choices in what medium you use to

address your goals, each with their own pros and cons. Some are quick to

create but accessible to fewer users. Others address a larger market, but are

far more complex and costly.

Mobile Application Medium Types

The mobile medium type is the type of application framework or

mobile technology that presents content or information to the user. It is a

technical approach regarding which type of medium to use; this decision is

determined by the impact it will have on the user experience. The

technical capabilities and capacity of the publisher also factor into which

approach to take.

We discussed the common mobile platforms in terms of how they

factor in the larger mobile ecosystem. Now we will look deeper into each

of these platforms from a more tactical perspective, unpacking them, so to

speak, to see what is inside.

Categories of Mobile Application medium types are listed

below:
▫ SMS

▫ Mobile Websites

▫ Mobile Web Widgets

▫ Mobile Web Applications

▫ Native Applications

▫ Games

▫ Mobile Application Media Matrix

▫ Application Context

▫ Utility Context

▫ Locale Context

▫ Informative Applications

▫ Productivity Application Context

▫ Immersive Full-Screen Applications

▫ Application Context Matrix

There are three types of popular apps as shown in figure 2-1

Author: Dr.P.Thiyagarajan, Dept. of Computer Science, Central University of

Tamil Nadu, Thiruvarur – 610 005.

34

1. Native apps is easy to use and mostly used. Native mobile applications

are completely coded in a specific programming language.

 iOS on Objective-C or Swift

 Android on Java

 Windows Phone on Net

2. Hybrid apps for all platforms altogether with Xamarin, React Native,

Ionic, Angular Mobile Sencha Touch etc.

3. Web apps as responsive versions of website to work on any mobile

device.

Figure 2-1 Types of Mobile Application

2.4.2 SMS

SMS (short message service) is a text messaging service

component of most telephone, Internet, and mobile device systems. It uses

standardized communication protocols to enable mobile devices to

exchange short text messages. An intermediary service can facilitate a

text-to-voice conversion to be sent to landlines.

The Short Message Service (SMS) allows the exchange of short

messages between a mobile station and the wireless system, and between

the wireless system and an external device capable of transmitting and

optionally receiving short messages.

Author: Dr.P.Thiyagarajan, Dept. of Computer Science, Central University of

Tamil Nadu, Thiruvarur – 610 005.

35

The external device may be a voice telephone, a data terminal or a

short message entry system. The Short Message Service consists of

message entry features, administration features, and message transmission

capabilities. These features are distributed between a wireless system and

the SMS message center (MC) that together make up the SMS system.

The message center may be either separate from or physically

integrated into the wireless system. Short message entry features are

provided through interfaces to the message center and the mobile station.

Senders use these interfaces to enter short messages, intended destination

addresses, and various delivery options.

The most basic mobile application you can create is an SMS

application. Although it might seem odd to consider text messages

applications, they are nonetheless a designed experience. Given the

ubiquity of devices that support SMS, these applications can be useful

tools when integrated with other mobile application types.

Typically, the user sends a single keyword to a five-digit short

code in order to return information or a link to premium content. For

example, sending the keyword “freebie” to a hypothetical short code

“12345” might return a text message with a coupon code that could be

redeemed at a retail location, or it could include a link to a free ringtone.

SMS applications can be both “free,” meaning that there is no

additional charge beyond the text message fees an operator charges, or

“premium,” meaning that you are charged an additional fee in exchange

for access to premium content.

The most common uses of SMS applications are mobile content,

such ringtones and images, and to interact with actual goods and services.

Some vending machines can dispense beverages when you send them an

SMS; SMS messages can also be used to purchase time at a parking meter

or pay lot.

A great example of how SMS adds incredible value would be

Twitter, where users can receive SMS alerts from their friends and post to

their timeline from any mobile device, or the SMS-to-Billboard that BBC

World News put up in Midtown Manhattan (Figure 2-2).

Author: Dr.P.Thiyagarajan, Dept. of Computer Science, Central University of

Tamil Nadu, Thiruvarur – 610 005.

36

Figure 2-2. An SMS application to interact with a billboard in Manhattan

 SMS messaging can be used as a marketing tool. An example is an

SMS newsletter system. After signing up, the user will receive SMS text

messages about the latest discounts and products of the company. If the

user has any questions or comments, he/she can send a text message back

with the questions or comments in it. The company may include its phone

number in the SMS newsletter so that the user can talk to the customer

service staff directly if he/she wants to do so.

In a remote system monitoring application, a program (sometimes

with the help of a group of sensors) is constantly monitoring the status of a

remote system. If a certain condition is satisfied, the program will send a

text message to the system administrator to notify him/her of the situation.

For example, a program may be written to "ping" a server regularly. If no

response is received from the server, the program can send an SMS alert to

the system administrator to notify him/her that the server may be hanged.

A chat application is another kind of person-to-person text

messaging application that allows a group of people to exchange SMS text

messages interactively. In a chat application, all SMS text messages sent

and received are displayed on the mobile phone's screen in order of date

and time.

SMS banking is a form of mobile banking. It is a facility used by

some banks or other financial institutions to send messages (also called

notifications or alerts) to customers' mobile phones using SMS messaging,

Author: Dr.P.Thiyagarajan, Dept. of Computer Science, Central University of

Tamil Nadu, Thiruvarur – 610 005.

37

or a service provided by them which enables customers to perform some

financial transactions using SMS.

SMS banking services may use either push and pull messages.

Push messages are those that a bank sends out to a customer's mobile

phone, without the customer initiating a request for the information.

Typically, a push message could be a mobile marketing message or

an alert of an event which happens in the customer's bank account, such as

a large withdrawal of funds from an ATM or a large payment involving

the customer's credit card, etc. It may also be an alert that some payment is

due, or that an e-statement is ready to be downloaded.

Pros

The pros of SMS applications include:

• They work on any mobile device nearly instantaneously.

• They’re useful for sending timely alerts to the user.

• They can be incorporated into any web or mobile application.

• They can be simple to set up and manage.

Cons

The cons of SMS applications include:

• They’re limited to 160 characters.

• They provide a limited text-based experience.

• They can be very expensive.

Author: Dr.P.Thiyagarajan, Dept. of Computer Science, Central University of

Tamil Nadu, Thiruvarur – 610 005.

38

2.4.3 Mobile Websites

As you might expect, a mobile website is a website designed

specifically for mobile devices, not to be confused with viewing a site

made for desktop browsers on a mobile browser. Mobile websites are

characterized by their simple “drill-down” architecture, or the simple

presentation of navigation links that take you to a page a level deeper, as

shown in Figure 2-3.

Figure 2-3. An example of a mobile website

Author: Dr.P.Thiyagarajan, Dept. of Computer Science, Central University of

Tamil Nadu, Thiruvarur – 610 005.

39

Mobile websites often have a simple design and are typically

informational in nature, offering few—if any—of the interactive elements

you might expect from a desktop site. Mobile websites have made up the

majority of what we consider the mobile web for the past decade, starting

with the early WML-based sites (not much more than a list of links) and

moving to today’s websites, with a richer experience that more closely

resembles the visual aesthetic users have come to expect with web content.

Though mobile websites are fairly easy to create, they fail to

display consistently across multiple mobile browsers—a trait common to

all mobile web mediums.

The mobile web has been gradually increasing in usage over the

years in most major markets, but the limited experience offered little

incentive to the user. Many compare the mobile web to a 10-year-old

version of the Web: slow, expensive to use, and not much to look at.

As better mobile browsers started being introduced to device

platforms like the iPhone and Android, the quality of mobile websites

began to improve dramatically, and with it, usage improved. For example,

in just one year, the U.S. market went from being just barely in the top five

consumers of the mobile web to number one, largely due to the impact of

the iPhone alone.

Pros

The pros of mobile websites are:

• They are easy to create, maintain, and publish.

• They can use all the same tools and techniques you might

already use for desktop sites.

• Nearly all mobile devices can view mobile websites.

Cons

The cons of mobile websites are:

• They can be difficult to support across multiple devices.

• They offer users a limited experience.

• Most mobile websites are simply desktop content

reformatted for mobile devices.

• They can load pages slowly, due to network latency.

Author: Dr.P.Thiyagarajan, Dept. of Computer Science, Central University of

Tamil Nadu, Thiruvarur – 610 005.

40

2.4.4 Mobile Web Widgets

Largely in response to the poor experience provided by the mobile

web over the years, there has been a growing movement to establish

mobile widget frameworks and platforms. For years the mobile web user

experience was severely underutilized and failed to gain traction in the

market, so several operators, device makers, and publishers began creating

widget platforms (Figure 2-4) to counter the mobile web’s weaknesses.

Trying to define what exactly a mobile web widget is and how it is

different from the other mobile web media is a question for the ages. We

initially saw mobile web widgets as another attempt by the mobile

industry to hype a technology that no one wants.

We liked to quiz mobile web widget advocates about what makes

mobile web widgets different than what we can do with the mobile web.

We will never get a straight answer. So in order to define a mobile web

widget, I followed some advice from my dad: “When in doubt, look it up

in the dictionary.” Here was the answer in Webster’s Dictionary:

A component of a user interface that operates in a particular way.

 The ever-trusty Wikipedia defines a web widget this way:

A portable chunk of code that can be installed and

executed within any separate HTMLbased web page by an end

user without requiring additional compilation.

 Between these two definitions is a better answer:

A mobile web widget is a standalone chunk of HTML-

based code that is executed by the end user in a particular way.

Author: Dr.P.Thiyagarajan, Dept. of Computer Science, Central University of

Tamil Nadu, Thiruvarur – 610 005.

41

Figure 2-4. An example mobile web widget

Basically, mobile web widgets are small web applications that

can’t run by themselves; they need to be executed on top of something

else. I think one reason for all the confusion around what is a mobile web

widget is that this definition can also encompass any web application that

runs in a browser. Opera Widgets, Nokia Web RunTime (WRT), Yahoo!

Blueprint, and Adobe Flash Lite are all examples of widget platforms that

work on a number of mobile handsets.

Using a basic knowledge of HTML (or vector graphics in the case

of Flash), you can create compelling user experiences that tap into device

features and, in many cases, can run while the device is offline. Widgets,

however, are not to be confused with the utility application context, a user

experience designed around short, task-based operations.

Author: Dr.P.Thiyagarajan, Dept. of Computer Science, Central University of

Tamil Nadu, Thiruvarur – 610 005.

42

Pros

The pros of mobile web widgets are:

 They are easy to create, using basic HTML, CSS, and

JavaScript knowledge.

 They can be simple to deploy across multiple handsets.

 They offer an improved user experience and a richer

design, tapping into device features and offline use.

Cons

The cons of mobile web widgets are:

 They typically require a compatible widget platform to be

installed on the device.

 They cannot run in any mobile web browser.

 They require learning additional proprietary, non-web-

standard techniques.

Mobile Web Applications

Mobile web applications are mobile applications that do not need

to be installed or compiled on the target device. Using XHTML, CSS, and

JavaScript, they are able to provide an application-like experience to the

end user while running in any mobile web browser. By “application-like”

experience, I mean that they do not use the drill-down or page metaphors

in which a click equals a refresh of the content in view. Web applications

allow users to interact with content in real time, where a click or touch

performs an action within the current view.

The history of how mobile web applications came to be so

commonplace is interesting, and is one that I think can give us an

understanding of how future mobile trends can be assessed and

understood. Shortly after the explosion of Web 2.0, web applications like

Facebook, Flickr, and Google Reader hit desktop browsers, and there was

discussion of how to bring those same web applications to mobile devices.

The Web 2.0 movement brought user-centered design principles to the

desktop web, and those same principles were sorely needed in the mobile

web space as well.

The challenge, as always, was device fragmentation. The mobile

browsers were years behind the desktop browsers, making it nearly

impossible for a mobile device to render a comparable experience. While

XHTML support had become fairly commonplace across devices, the

Author: Dr.P.Thiyagarajan, Dept. of Computer Science, Central University of

Tamil Nadu, Thiruvarur – 610 005.

43

rendering of CSS2 was wildly inconsistent, and support for JavaScript,

necessary or simple DHTML, and Ajax was completely nonexistent.

With the introduction of the first iPhone, we saw a cataclysmic

change across the board. Using WebKit, the iPhone could render web

applications not optimized for mobile devices as perfectly usable,

including DHTML- and Ajax-powered content. Developers quickly got on

board, creating mobile web applications optimized mostly for the iPhone

(Figure 2-5). The combination of a high-profile device with an incredibly

powerful mobile web browser and a quickly increasing catalog of nicely

optimized experiences created the perfect storm the community had been

waiting for.

Figure 2-5. The Facebook mobile web app

Usage of the mobile web exploded with not just users of the

iPhone, but users of other handsets, too. Because web applications being

created for the iPhone were based on web standards, they actually worked

Author: Dr.P.Thiyagarajan, Dept. of Computer Science, Central University of

Tamil Nadu, Thiruvarur – 610 005.

44

reasonably well on other devices. Operators and device makers saw that

consumers wanted not just the mobile web on their handsets, but the

regular Web, too.

In less than a year, we saw a strong unilateral move by all

operators and devices makers to put better mobile web browsers in their

phones that could leverage this new application medium. We have not

seen such rapid innovation in mobile devices since the inclusion of

cameras.

The downside, of course, like all things mobile-web-related, is that

not all devices support the capability to render mobile web applications

consistently. However, we do see a prevalent trend that the majority of

usage of the mobile web is coming from the devices with better browsers,

in some markets by a factor of 7:1. So although creating a mobile web

application might not reach all devices, it will reach the devices that create

the majority of traffic.

Pros

The pros of mobile web applications are:

• They are easy to create, using basic HTML, CSS, and JavaScript

knowledge.

• They are simple to deploy across multiple handsets.

• They offer a better user experience and a rich design,

tapping into device features and offline use.

• Content is accessible on any mobile web browser.

Cons

The cons of mobile web applications are:

• The optimal experience might not be available on all

handsets.

• They can be challenging (but not impossible) to support

across multiple devices.

• They don’t always support native application features, like

offline mode, location lookup, filesystem access, camera,

and so on.

Author: Dr.P.Thiyagarajan, Dept. of Computer Science, Central University of

Tamil Nadu, Thiruvarur – 610 005.

45

2.5 Native Applications

The next mobile application medium is the oldest and the most

common; it is referred to as native applications, which is actually a

misnomer because a mobile web app or mobile web widget can target the

native features of the device as well. These applications actually should be

called “platform applications,” as they have to be developed and compiled

for each mobile platform.

These native or platform applications are built specifically for

devices that run the platform in question. The most common of all

platforms is Java ME (formerly J2ME). In theory, a device written as a

Java ME MIDlet should work on the vast majority of feature phones sold

around the world. The reality is that even an application written as a Java

ME MIDlet still requires some adaptation and testing for each device it is

deployed on.

In the smartphone space, the platform SDKs get much more

specific. Although many smartphones are also powered by Java, an

operating system layer and APIs added to allow developers to more easily

offload complex tasks to the API instead of writing methods from scratch.

In addition to Java, other smartphone programming languages include

versions of C, C++, and Objective-C (Figure 2-6).

Creating a platform application means deciding which devices to

target, having a means of testing and certification, and a method to

distribute the application to users. The vast majority of platform

applications are certified, sold, and distributed either through an operator

portal or an app store. It is possible to create a Java ME MIDlet

application and publish it for free on the Web, but it is rarely done.

Because platform applications sit on top of the platform layer, they

can tap into the majority of the device features, working online or offline,

accessing the location and the filesystem—and if there’s camera on the

device, then you can probably do something with it as well. Hence the

need for certification before the application is distributed, to ensure that no

one distributes an application that steals a user’s personal data or

maliciously uses the device to spread viruses.

Author: Dr.P.Thiyagarajan, Dept. of Computer Science, Central University of

Tamil Nadu, Thiruvarur – 610 005.

46

Figure 2-6. A native application in the iPhone

However, if you exclude games, the majority (by some estimates,

as much as 70 percent) of native applications in use today could be created

with a little bit of XHTML, CSS, and JavaScript—in other words, a

mobile web application, with little or no feature loss to the user. The

advantage is that a mobile application can be developed faster, will work

on more devices, require less testing, and be updated more transparently

than a native application, which requires third-party certification and

publishing in order to get on users’ devices. All of these aspects are highly

desired in the platform application space. The downside is that it requires a

fast and capable mobile web browser that supports offline data and access

to device features like location.

Author: Dr.P.Thiyagarajan, Dept. of Computer Science, Central University of

Tamil Nadu, Thiruvarur – 610 005.

47

Pros

The pros of native applications include:

• They offer a best-in-class user experience, offering a rich

design and tapping into device features and offline use.

• They are relatively simple to develop for a single platform.

• You can charge for applications.

Cons

The cons of native applications include:

• They cannot be easily ported to other mobile platforms.

• Developing, testing, and supporting multiple device

platforms is incredibly costly.

• They require certification and distribution from a third

party that you have no control over.

• They require you to share revenue with the one or more

third parties.

2.5.1 Games

A mobile game is a game played on a feature phone, smart phone,

tablet, smart watch, PDA, portable media player or graphing calculator.

The earliest known game on a mobile phone was a Tetris.

The interesting and entertained mobile medium is games, the most

popular of all media available to mobile devices. Technically games are

really just native applications that use the similar platform SDKs to create

immersive experiences (Figure 2-7). But I treat them differently from

native applications for two reasons: they cannot be easily duplicated with

web technologies, and porting them to multiple mobile platforms is a bit

easier than typical platform-based applications.

Although you can do many things with a powerful mobile web

browser, creating an immersive gaming experience is not one of them—at

least not yet. Seeing as how we have yet to see these types of gaming

experiences appear on the desktop using standard web technologies,

We are still a few years out from seeing them on mobile devices.

Adobe’s Flash and the SVG (scalable vector graphics) standard are the

only way to do it on the Web now, and will likely be how it is done on

mobile devices in the future, the primary obstacle being the performance

of the device in dealing with vector graphics.

Author: Dr.P.Thiyagarajan, Dept. of Computer Science, Central University of

Tamil Nadu, Thiruvarur – 610 005.

48

The reason games are relatively easy to port (“relatively” being the

key word), is that the bulk of the gaming experience is in the graphics and

actually uses very little of the device APIs. The game mechanics are the

only thing that needs to adapted to the various platforms. Like in console

gaming, there are a great number of mobile game porting shops that can

quickly take a game written in one language and port it to another.

These differences, in my mind, are what make mobile games stand

apart from all other application genres—their capability to be unique and

difficult to duplicate in another application type, though the game itself is

relatively easy to port. Looking at this model for other application areas—

namely, the mobile web—could provide helpful insight into how we create

the future of mobile web applications.

Figure 2-7. An example game for the iPhone

Author: Dr.P.Thiyagarajan, Dept. of Computer Science, Central University of

Tamil Nadu, Thiruvarur – 610 005.

49

Pros

The pros of game applications are:

• They provide a simple and easy way to create an immersive

experience.

• They can be ported to multiple devices relatively easily.

Cons

The cons of game applications are:

• They can be costly to develop as an original game title.

• They cannot easily be ported to the mobile web.

Mobile Application Media Matrix

To aid in comparing and contrasting which of these mobile application

media is best for your mobile product, we placed them into a matrix (Table

2.1).

Matrix
Device

support

Complex

ity

User

experience
Language

Offline

support

Device

features

SMS All Simple Limited N/A No None

Mobile

websites

All Simple Limited HTML No None

Mobile web

widgets

Some Medium Great HTML Limited Limited

Mobile web

applications

Some Medium Great HTML,

CSS,

JavaScript

Limited Limited

Native

applications

All Complex Excellent Various Yes Yes

Games All Complex Excellent Various Yes Yes

Application Context

Once your application medium is decided upon, it is time to look at

the application context, or the appropriate type of application to present to

the user in order for the user to process and understand the information

presented and complete her goals. Where the application medium refers

mostly to the technical approach of creating an application, the application

context deals with the user experience.

Applications can be presented in a variety of ways, ranging from a

simple task-based utility to an experience meant to consume the user’s

focus and attention. There of course is no right or wrong direction—only

Author: Dr.P.Thiyagarajan, Dept. of Computer Science, Central University of

Tamil Nadu, Thiruvarur – 610 005.

50

what is best for your user. In fact, nothing says that you can’t use multiple

application contexts within the same application.

We just wouldn’t recommend it unless you have really thought out

the flow of your application, because typically it is best to present only one

application context so as to avoid confusing the user. If you think it best

for your app to mix contexts, then give the user the option to switch

between them; for example, some smartphones allow for an orientation

change, so if the device is rotated to landscape mode, your app switches

from an informative view to a utility view, or maybe from a locale view to

an immersive view.

2.5.2 Utility Apps

The most basic application context is the utility, or a simple user

experience metaphor that is meant to address short, task-based scenarios.

Information is meant to be presented in a minimal fashion, often using the

least amount of user input as possible. An example of a utility might be a

calculator, weather forecast, unit conversion, stocks, world clock, and so

on. In each of these cases, the user enters a small amount of information

into the utility, like a simple equation, a city, or a stock symbol, and either

by performing a small background task or fetching information online, the

utility is able to present data to the user in the desired context (Figure 2-8).

Author: Dr.P.Thiyagarajan, Dept. of Computer Science, Central University of

Tamil Nadu, Thiruvarur – 610 005.

51

Figure 2-8. An example utility application

The goal of the utility is to give users at-a-glance information,

therefore offering users a minimal design aesthetic, focusing the design

around the content in view, and often using larger type and a sparse layout.

It would be easy to mistake utilities for widgets, given that widgets

are a “component of a user interface that operates in a particular way.” But

utilities can be much more than widgets; they are not merely an extension

of the user experience, but are applications in their own right that can

establish their own look and feel separate from the established user

experience.

Author: Dr.P.Thiyagarajan, Dept. of Computer Science, Central University of

Tamil Nadu, Thiruvarur – 610 005.

52

Use utilities for short, simple tasks, at-a-glance information, when

there is limited content to display, and when combined with an immersive

context to create dual-mode applications.

Calculator provides simple and advanced mathematical functions

in a beautifully designed app.

Figure 2-9. An example utility application – Calculator.

It performs basic calculations such as addition, subtraction, multiplication,

and division. It also do scientific operations such as trigonometric,

logarithmic, and exponential functions.

2.5.3 Location Based Services(LBS)

Locale Context The locale context is a newer application type that

is still being defined by the mobile community, but we are certainly seeing

some clear patterns of how to create locale applications (Figure 2-10). As

more location information is being published online, and more devices add

GPS to pinpoint the user’s location, locale is becoming an excellent data

point to pivot information around. For example, we can use location to

display the cafés nearest to my current location.

Author: Dr.P.Thiyagarajan, Dept. of Computer Science, Central University of

Tamil Nadu, Thiruvarur – 610 005.

53

Figure 2-10. An example locale application

Locale applications almost always have at least one thing in

common: a map on which they plot the requested data points visually. At

the very least, they list items in order of distance, with the nearest item

first and the farthest last.

The user’s goal is to find information relative to his present

location, and content should always be designed with this in mind. When

creating locale apps, it is important to ensure that the user’s present

location is always clearly identified, as well as a means of adding data to

it. This could be another location, in the case of finding point-to-point

Author: Dr.P.Thiyagarajan, Dept. of Computer Science, Central University of

Tamil Nadu, Thiruvarur – 610 005.

54

directions, or it could be a keyword query to find people, places, or things

nearby.

Use locale applications for location-based applications,

applications that might contain a dynamic map, and listing multiple

location-based points of interest.

Location-Aware Mobile Computing

Mobility support of mobile wireless systems naturally leads to

location-aware computing that encompasses a number of techniques,

protocols, and enabling mobile wireless technologies and mobile devices

utilizing an object's location information to provide augmented consumer-

or business-oriented applications and services - namely, location-based

services (LBSs). To mobile service providers, LBSs seem to be good

candidates for value-added services that have the potential to grow

significantly as more location-aware mobile devices and network

capabilities are being used.

An object's location is indeed a key component of context,

meaning that location-aware computing is actually concerned with making

a mobile wireless system context aware in terms of location. Location-

based services and applications are therefore the first step toward context

awareness in a pervasive mobile computing environment. The role of

smart phones in the context of location-aware computing is crucial, as a

smart phone is very likely to have multiple wireless interfaces; thus, with

some supporting software, a smart phone could be used as a location-

sensing device for object localization.

The first issue is concerned with choosing the best location data

model for a location-aware computing system, whereas localization is

generally defined as involving location determination schemes and

algorithms. Enabling technologies for localization in the wireless world

are referred to as location sensing technologies, including global

positioning systems (GPSs), cellular base stations, wireless local area

networks (LANs), ultrasound, radio frequency identification (RFID) tags,

and wireless sensor networks. An assortment of location sensing systems

using one or more of these technologies has been developed. In particular,

indoor location sensing is in great demand by many industry sectors, such

as healthcare facilities and warehouses, yet numerous challenging issues

remain to be addressed.

Localization in wireless sensor networks is another difficult but

interesting issue, and location awareness is becoming a building block for

Author: Dr.P.Thiyagarajan, Dept. of Computer Science, Central University of

Tamil Nadu, Thiruvarur – 610 005.

55

many mobile applications and services. To foster future location-aware

computing systems and location-based services, we explore location-

related schemes and techniques used in emerging location-based services

and applications.

Location Representation

In location-aware computing, the terms position and location are

used frequently. In most cases they are interchangeable, but they do not

always refer to the same thing. Position is defined as the geospatial place

of an object, often represented by coordinates. Location has a more

general, semantic meaning with respect to the position of an object; for

example, the location of a person could be "room 113 of the engineering

building." The process of determining an object's location is called

localization, or positioning. Based on location information collected at

different granularities over time and on the context of movement, object

movement tracking and path projection can also be performed.

A core element of location-based services and location sensing

systems is location representation. Localization algorithms generate data

in the form of a location representation model, and applications and

services must make location queries conforming to the selected location

representation model. Depending on the circumstance of the application,

different models can be used, such as the geometric model, symbolic

model, and location graph model. A geometric model uses location

properties of an object to pinpoint it in two-dimensional or three-

dimensional space. The properties can be distance, angle, time, etc.

The coordinates in a geometric model can be either absolute

coordinates, such as latitude, longitude, and altitude used by GPS, or

relative coordinates, such as an application-specific grid coordinates.

Geometric models are fairly simple to process mathematically in Euclidian

space, but in some cases they may be overkill and may not provide truly

useful information to an application, as raw coordinates are in effect

meaningless without referencing objects such as rooms, buildings, and

streets. Symbolic or semantic models seem to be a better solution to

relative localization, which simply identifies an object as being within or

close to some known objects.

For example, in an indoor location sensing system, a symbolic

location representation could be "John Doe is now in room 3353 on the

third floor of the engineering building." This type of location information

Author: Dr.P.Thiyagarajan, Dept. of Computer Science, Central University of

Tamil Nadu, Thiruvarur – 610 005.

56

is more meaningful than the person's geospatial coordinates. The symbolic

model does not require fine-grained position information of the object.

A third type of model, a location map, is based on a map of

symbolic representations rather than geometric ones. It is essentially a

conceptual combination of the other two models. Consequently, it is more

complicated than the other two models because of the integration and

mapping between the geometric location information and symbolic

location information. Choosing a location representation model is largely

dependent on the requirements of the location sensing system in terms of

overall accuracy, location update frequency, and infrastructure cost.

Localization Techniques

Location sensing systems invariably employ some localization

techniques or algorithms that generally require some sort of wireless signal

measurement to compute an object's position. Localization techniques can

be divided into three categories: triangulation, scene analysis, and

proximity.

1. Triangulation: Triangulation utilizes geometric properties of a

triangle to compute an object's position based on the positions

of two or three vertices of a triangle. The two types of

triangulation are lateration and angulation. Lateration relies on

distance measurements from the object being localized to three

reference points and distances between reference points,

whereas angulation achieves the same task using angular or

bearing measurements and a known distance between two

reference points. Figure 2-11 shows these two basic techniques

on a two-dimensional plane. In Figure 2.11a, three noncollinear

reference points are required to obtain a total number of six

distance measurements for lateration. For three-dimensional

localization, four noncoplanar reference points are needed. In

Figure 2-11b, only two reference points, one distance

measurement between the two reference points, and two

angular measurements are necessary for angulation. In three

dimensions, an additional azimuth measurement (horizontal

angle between a reference point and the unknown object) is

necessary. Note that in angulation the magnetic north is often

chosen as the base of angle measurement. Distance

measurements for lateration in wireless communication are

often conducted by measuring the time of flight (TOF), time of

arrival (ToA), or angle of arrival (AOA) of wireless signals.

Given the speed of a radio signal or a sound wave traveling in

Author: Dr.P.Thiyagarajan, Dept. of Computer Science, Central University of

Tamil Nadu, Thiruvarur – 610 005.

57

space, the distance between a transmitter and a receiver can be

computed by multiplying the speed and the time it takes to

reach the receiver (TOF). Because the speed of light and

radiowaves is extremely high (approximately 300,000 km/sec),

TOF measurement must have a very high resolution to achieve

reasonable accuracy. For example, in order to achieve a

location accuracy of 5 to l Om, the clock resolution of a

distance measurement must be at the level of 15 to 30 nsec. If a

radio signal is unidirectional, the transmitter and the receiver

must have their clocks synchronized to measure TOF. This is

often difficult to realize in a distributed network environment.

A solution to this problem is to enable precise clock

synchronization among reference points but not the unknown

object. Thus, the clock drift of the unknown object is an

additional variable in lateration or angulation computations and

requires an additional reference point.

Figure 2-11 Triangulation techniques.

2. Scene analysis: Scene analysis for location sensing circumvents

geometric computation but requires a map of the scene where

known objects are located. The map is a dataset of features,

such as signal strength across a space, and visual scenery taken

from a vantage point. Static scene analysis, sometimes referred

to as calibration, compares the observed features at a location

to an existing feature map to identify the position in question.

In differential scene analysis, changes between subsequent

scenes are used to track the observer's position. In both cases,

some imaging processing and information retrieval (IR)

techniques are likely to be used. In addition, because of the

inherent uncertainty in scene analysis, sophisticated statistical

models such as Bayes filters have been introduced mostly in

indoor location sensing system that use electronic features for

scene analysis. Aside from asset or person localization, scene

Author: Dr.P.Thiyagarajan, Dept. of Computer Science, Central University of

Tamil Nadu, Thiruvarur – 610 005.

58

analysis is used in wireless networks, mostly 802.11 wireless

LANs, for site surveys to optimize access point channels and

locations in a given location, utilizing onsite measurement

along with floor plans. The technique can be also used in

wireless intrusion detection systems (IDSs) to detect and

estimate the location of rogue access points and possible

wireless attacks. Generally, wireless IDSs are able to monitor

and analyze wireless traffic in the network and identify

abnormal traffic patterns from mobile stations and access

points. Localization techniques such as proximity,

triangulation, and scene analysis are common components of

wireless IDS to help network administrators determine the

location of rogue access points and mobile stations. Some

commercial Wi-Fi location systems such as Ekahau and

Airspace RF Fingerprinting have been developed using this

approach scene analysis techniques. Ekahau

(http://www.ekahau.com/) does not employ any propagation or

triangulation methods that suffer from radiowave multipathing,

scattering, and attenuation effects. Instead, a scene analysis

method called site calibration is used for collecting radio

network sample points from different site locations. Each

sample point contains a statistical summary of the received

signal intensity (RSSI) and related map coordinates. The

limitation of this approach is that the map has to be updated

whenever the underlying scene changes with respect to the

selected featured being presented. In addition, building a map

of features by sampling at many places is not an easy task.

Hence, a balance has to be achieved between map granularity

and map creation overhead. Researchers have been using robot

to conduct this tedious work.

3. Proximity: Proximity-based location sensing techniques do not

offer direct quantitative position of an unknown object. Instead, they

only provide proximity information such as serving base stations of

the unknown object. The main idea of these techniques is essentially

binary distance measurement to known reference points in proximity.

For example, by comparing signal strength at a set of wireless LAN

access points from a wireless LAN device, a proximity base location

sensing system is able to tell which access points are closer to the

devices than others. Because those wireless access points were

previously mapped to physical locations, the system can localize and

track the device with respect to the signal scope of base stations

encountered. Clearly the accuracy of such systems relies on the

granularity of the base stations in the proximity determination. If a

location-based application employs a symbolic location

representation model, then proximity-based localization techniques

Author: Dr.P.Thiyagarajan, Dept. of Computer Science, Central University of

Tamil Nadu, Thiruvarur – 610 005.

59

can be used to localize an unknown object with respect to symbolic

locations of reference points in proximity.

Global Positioning System(GPS)

The GPS system consists of a total number of 24 GPS satellites

orbiting the Earth, operated by the U.S. Department of Defense. GPS

satellite signals can be used by anyone free of charge. At one time, the

signals were modified so nongovernmental users could not obtain the

greatest accuracy possible. This "selective availability" was discontinued

by the federal government in 2000; however, for military purposes,

"selective deniability" can still be used to degrade signals received by

civilian GPS units in a war zone without affecting military GPS units.

The European Union has developed a plan to launch its own GPS

system (the Galileo position system) by 2008. A GPS receiver performs

location estimation by measuring the time difference of arrival of signals

from four GPS satellites.

Prior to becoming available to the general pubic, GPS has been

widely used in global navigation and in providing synchronization for

cellular networks. Because the cost of a GPS receiver chipset continues to

drop, GPS is generally considered the best choice for outdoor location

sensing. For one thing, aside from working as a standalone mobile device,

a GPS receiver chipset can be comfortably embedded into a cell phone or

can be packed into a small expansion card. We believe that eventually

every smart phone will have an onboard GPS chipset. In addition, many

cars now have been equipped with a GPS navigation system.

A GPS satellite circles the Earth twice a day at an altitude of

20,200kin (about 12,600miles). Each GPS satellite has an atomic clock

that keeps extremely precise time. To perform location calculations, a GPS

receiver must receive signals from four GPS satellites.

The receiver then calculates a pseudorange, which is the time

difference between its local clock and the time when a signal is sent from a

satellite. By multiplying the speed of the radio signal and the pseudorange,

the receiver can locate itself onto a sphere corresponding to each of the

four satellites. The GPS receiver does not need to be equipped with a high-

precision clock. As long as the receiver's local clock is stable in the short

term, differences between the time points when GPS satellite signals are

received can be measured quite accurately and will eventually yield the

location of the GPS receiver.

Author: Dr.P.Thiyagarajan, Dept. of Computer Science, Central University of

Tamil Nadu, Thiruvarur – 610 005.

60

A GPS receiver can calculate its geographic location in terms of

latitude, longitude, and altitude, although latitude and longitude are more

likely to be used. An even more accurate system is Universal Transverse

Mercator (UTM), a topographical rectangular grid consisting of 60 zones

of 6 degrees of longitude; coordinates are expressed in meters east of the

zone origin and north of the equator. For example, a location of N 40 ~

05.425 W 075 ~ 07.035 can be converted into UTM to produce 18T E

490004 N 4437799.

The localization accuracy is measured by the distance deviation

(e.g., 1 to 5 m). Another way to evaluate the accuracy of a GPS is

precision, or the number of times a GPS receiver can give a claimed

accuracy. Because a GPS receiver must obtain multiple signals from

different satellites in order to calculate the first result, there is a significant

delay called time to first fix (TFFF), which is commonly in the range of 20

to 40 sec. Network-assisted GPS (A-GPS) uses a large number of

networked receivers to assist regular GPS receivers.

These networked receivers constantly collect GPS satellite signals,

and a regular GPS receiver can request GPS data from these networked

receivers instead of GPS satellites.

The global positioning system can generally fulfill the need for

accurate positioning in outdoor settings and can provide worldwide

coverage. Due to the nature of satellite signal reception, it does not

perform well indoors.

In addition, because localization (which is highly computational

intensive) is done on the GPS receiver, power consumption of a GPS

chipset can be a problem that could impede the adoption of GPS-enabled

smart phones.

Author: Dr.P.Thiyagarajan, Dept. of Computer Science, Central University of

Tamil Nadu, Thiruvarur – 610 005.

61

2.6 Apps

A mobile application, also referred to as a mobile app or simply an

app, is a computer program or software application designed to run on a

mobile device such as a phone, tablet, or watch. Apps were originally

intended for productivity assistance such as email, calendar, and contact

databases, but the public demand for apps caused rapid expansion into

other areas such as mobile games, factory automation, GPS and location-

based services, order-tracking, and ticket purchases, so that there are now

millions of apps available.

Informative Apps and Enterprise Apps are explained in next

chapter with example.

2.6.1 Informative Apps

The informative application is an application context in which the

one and only goal is to provide information, like a news site, an online

directory, a marketing site, or even a mobile commerce site, where the key

task of the user is to read and understand and it is not necessary to interact

(Figure 2-12). This isn’t to say that you cannot include calls to action in

the informative context—in fact, you should, but they should be based

around what you can assume about your users in this context.

For example, remember that most mobile tasks are short and are

often undertaken during brief idle periods. The user doesn’t have much

extra time and the task can be interrupted at any moment. In the case of a

mobile news site, provide the user with the option to mark a page or story

to be read later. With an online directory, allow the user to flag favorite

entries. With a marketing site, allow users to enter the shortest possible

contact information, like their phone number or email. And with a mobile

commerce site, allow users to save items to a wishlist to review and

purchase later.

The theme here is that although reading information is a simple

task, it usually creates a complex chain of events that can be anticipated.

With mobile applications, we want to avoid forcing the users to input too

much information with their mobile devices, which is more difficult and

takes more time than it would on another medium such as a desktop or

laptop computers. Instead, we want to look for ways we can interconnect

experiences, having users use the informative context to filter to the most

desirable information when they have a moment, and allowing them to

Author: Dr.P.Thiyagarajan, Dept. of Computer Science, Central University of

Tamil Nadu, Thiruvarur – 610 005.

62

interact with it later, when they have more time, from the medium of their

choice.

Use informative applications when users need information to gain

an understanding or perform a physical task, for applications that can be

used in multimedia contexts such as desktop and mobile, for information-

heavy applications, and for marketing or promotional applications.

Figure 2-12. An example informative application

Author: Dr.P.Thiyagarajan, Dept. of Computer Science, Central University of

Tamil Nadu, Thiruvarur – 610 005.

63

Productivity Application Context

The productivity application context is used for content and

services that are heavily task-based and meant to increase the users’ sense

of efficiency. With these types of applications, we can assume that the

users are more committed to accomplishing a particular goal, like

managing content such as messages, contacts, or media, but we should still

assume that they are doing so during idle periods (Figure 2-13). Just

because the application context is meant to make users more productive,

we can’t assume that they are able to make the same time commitment as

they would in the desktop context.

Figure 2-13. An example productivity application

Productivity applications are often very structured, presenting

information in a defined hierarchy and often using the folder or group

Author: Dr.P.Thiyagarajan, Dept. of Computer Science, Central University of

Tamil Nadu, Thiruvarur – 610 005.

64

metaphor to define a sense of order to the user. When designing these

types of apps, we need to pay careful consideration to how the user thinks

out the task. People have an uncanny ability to understand and recall

complex hierarchies of tasks—for example, what they need to do first,

second, and third in order for a particular solution to work. We take this

for granted and in the desktop context often show the users the entire

hierarchy visually. In the mobile context, we don’t have the screen real

estate, and therefore need to help users find their way.

One method is to focus on prioritization of tasks; productivity

applications typically include some method of direct or indirect

prioritization. If we look at a mobile email client, we see that the app

generally focuses around the inbox, which is the top-priority item, given

that all new messages will come there first. All other folders are of a lower

priority, as in order for messages to get there, we will have had to process

them previously.

We can use this screen as a central focus point, assuming that users

will spend the majority of their time there, and branching out onto other

screens from this central spot. But we can’t forget other high-priority

items, like the ability to send a new message or create a new item. This is a

task that is typically included on every screen within an email app, and in

the same position throughout to ensure that users always have quick access

to create a new item.

The productivity context is one of the hardest application contexts

to get right, so do yourself a favor and start simple. Start with one feature,

treat it almost as if it were a single focus utility, and get it right before you

move on to the next. Layer in your features one at a time until you feel like

you have met the users’ goals, and stop the moment that it becomes it bit

overwhelming to manage. You probably won’t be able to include every

feature, so you will need to include only the ones that are most important

to users, and lose everything else. Use the productivity application context

for information-heavy applications where the user will need to manage

content from a mobile device and for heavily structured, hierarchy-based

tasks.

Immersive Full-Screen Applications

The final application context is an immersive full-screen

application, like a game, a media player, or possibly even a single-screen

utility. These applications are meant to consume the user’s focus, often

doing so by filling the entire screen (Figure 2-14), and leaving no trace of

the device user interface to distract the user. Again, the majority of mobile

Author: Dr.P.Thiyagarajan, Dept. of Computer Science, Central University of

Tamil Nadu, Thiruvarur – 610 005.

65

engagement occurs when the user has idle periods of time; the immersive

context is typical in most entertainment applications, one of the most

popular mobile content areas.

Figure 2-14. An example of an immersive application

The most common use of the immersive context is obviously with

a game, for which you want the user to focus on how to play the game. But

this context can also be used with other contexts, presenting a full-screen

view of content when the device orientation changes in many higher-end

devices. For example, if we were making a localebased application, we

could add a feature that changes the user experience to the immersive

context, showing a full-screen map, or point-by-point directions, whenever

Author: Dr.P.Thiyagarajan, Dept. of Computer Science, Central University of

Tamil Nadu, Thiruvarur – 610 005.

66

the device is held in landscape view. This is not a feature that many

applications include, but I think it is worth considering.

Even with mobile web apps, many devices allow for detection of

an orientation change. Typically, the app just scales to fill the page,

actually breaking the intended user experience, but by adding the

orientation-specific styles, the designer could create an immersive version

of the application, presenting the app content in a more at-a-glance,

friendly way, helpful for devices placed on automobile dashboards, or held

in the hand to show others.

Use an immersive full-screen application for games, media players,

and alternative views of another application context.

Application Context Matrix

Each of the application contexts in Table 2-2, comparing and contrasting

their benefits to help you determine what is best for your application.

Table 2-2. Application context matrix

Application

context

Matrix

User

experience

type

Task type Task

duration

Combine

with

Utility At-a-glance Information

recall

Very short Immersive

Locale Location-

based

Contextual

information

Quick Immersive

Informative Content-

based

Seek

information

Quick Locale

Productivity Task-based Content

management

Long Utility

Immersive Full screen Entertainment Long Utility,

Locale

As you can see, mobile applications can run the gamut from

intense experiences to simple tools. In some cases, they can switch back

and forth between the two. Figure out which type of application is best for

your users and in what context.

Author: Dr.P.Thiyagarajan, Dept. of Computer Science, Central University of

Tamil Nadu, Thiruvarur – 610 005.

67

2.6.2 Enterprise Apps

Mobile enterprise applications refer to a set of corporate

applications that assist employee in performing business practice in many

aspects, including fast data integration and decision making, real-time

communication, and close control over goods and services. Mobile

enterprise applications present a tremendous opportunity for enterprise

application designers to take advantage of mobile computing in business

operations. The goal of general enterprise applications is to enable

business process automation in various scenarios.

The above Table outlines widely used enterprise applications in the

corporate world. Note that all enterprise applications must support both

back-office (within the corporate site) and front-office operations (at field

sites or customer sites).

Among these enterprise systems, ERR is generally the most

sophisticated and requires intensive on-site customization and

Author: Dr.P.Thiyagarajan, Dept. of Computer Science, Central University of

Tamil Nadu, Thiruvarur – 610 005.

68

optimization when it is deployed in a company, whereas CRM and KM

may simply work off the shelf.

ERP essentially provides a data layer platform upon which a broad

set of business processes can be interconnected and automated, such as

bills of materials (BOMs), purchasing, accounts payable, manufacturing

resource planning (MRP), sales and marketing, inventory management,

etc. SCM is closely related to ERP with regard to sharing inventory and

accounting information.

SCM is primarily concerned with improving the flow and

efficiency of the supply chain, which can be broken down into five stages:

supply chain planning, sourcing, manufacturing, delivery, and return.

CRM and partner relationship management (PRM) are stand-alone

applications focusing on maximizing the benefits of customer assets or

partner assets.

Three types of business processes are involved in CRM: sales,

which uses customer data for sales planning, sales analytics, and account

management; marketing, which uses customer data to plan and manage

campaigns and promotions; and service, which primarily deals with

customer services. Customers can directly interface to CRM to perform

self-guided operations. Obviously CRM and ERP share some

functionalities as well as customer data. KM is not as common an

enterprise application as ERP, SCM, and CRM.

All these systems can be exposed in some way to a collaboration

platform that enables effective communication in a virtual working

environment; yet, all these systems, including the collaboration platform

and legacy enterprise systems, could possibly be integrated into a more

strategic, enterprise-wide solution using some middleware. Between

companies, web services are often used to enable interoperability.

The back end of enterprise applications always sits in a wired

network, whereas the front end could be running on wired desktop

computers or mobile devices within the enterprise network or on remote

computers and mobile devices on the Internet via virtual private networks

(VPNs). Enhancing these enterprise applications with mobile features

could extend the reach of the application, thereby improving work

productivity and reducing operational cost. The simplest form of mobile

enterprise applications is supplying a mobile client that allows a mobile

worker or a customer to access back-end systems anywhere, anytime.

Author: Dr.P.Thiyagarajan, Dept. of Computer Science, Central University of

Tamil Nadu, Thiruvarur – 610 005.

69

For each type of enterprise applications, a new set of mobile

modules that enable augmented collaboration and intelligent business

processing can be integrated into an enterprise system.

Figure 2-15 Mobile enterprise applications.

Figure 2-15 provides an overview of the enterprise application

environment augmented with mobile technologies. Two types of

applications for mobile wireless technologies could be used in an

enterprise business environment. One is to build wireless networks and

corresponding applications that directly engage in business processes such

as manufacturing, floor planning, and inventory management, as part of

the entire enterprise information and business processing system.

Examples of this type of mobile application are wireless sensor networks

in a manufacturing plant, location-based asset tracking in a hospital using

wireless LAN or Bluetooth, and RFID-based inventory management in a

warehouse.

The other type of application is to provide optimized mobile client

portals on a mobile device for employees working in the field or at

customer sites; for example, onsite field engineers can use mobile devices

to directly access a backend database in real time to obtain job details and

schedules and to communicate with other field workers on other sites.

These two types of mobile applications essentially "mobilize" an

enterprise system from the internal to the external.

Author: Dr.P.Thiyagarajan, Dept. of Computer Science, Central University of

Tamil Nadu, Thiruvarur – 610 005.

70

Below is a summary of potential mobile applications for enterprise

systems. These applications are by no means exhaustive, but they do

illustrate the diverse ways mobile enterprise applications can help a

company to conduct business:

1. Inventory management---Traditionally, inventory management

has relied on manual scanning of a UPN (Universal Personal

Number) code on pallets or products, which is time consuming

and error prone. As RFID technology matures, low-cost RFID

tags attached to pallets and products can be polled wirelessly

by a nearby RFID reader. These RFID readers are furthered

connected to server via a wired network, where raw tag data are

mapped into detailed product information, aggregated, and sent

to the central inventory system. A reader can also be attached

to a mobile device to permit convenient point-and-check on the

move. This scheme is actually a binary form of a proximity-

based localization system. This may not suffice when accurate

location of a product is needed, such as in a huge warehouse.

Using some RFID tags placed at fixed locations as reference

tags, it is possible to track the locations of product tags in real

time. As mentioned earlier in the location-aware computing

section, RFID can be combined with wireless LAN to provide

real-time locating and monitoring (RTLM) for indoor asset

management. Both ERP applications and SCM applications of

a company or a retail store can be enhanced with RTLM to

improve productivity (e.g., discovering shortages of materials,

placing orders, confirming orders). Technical requirements of

such systems include sufficient localization accuracy, long

battery life of tags, seamless integration with other enterprise

systems, and easy deployment and upgrade.

2. Onsite processing --- Field engineers, salespersons, and mobile

workers at a remote site may take advantage of mobile client

applications to access back-end enterprise systems in real-time.

For example, by using a mobile device that wirelessly connects

to a Job scheduling system, a field engineer can be dynamically

assigned to a work item and can retrieve detailed information

about the work item without going back to the office. While a

phone call can be an option for quick and direct

communication, it is generally difficult, if not impossible, to

exchange detailed information such as numeric data and

pictures in a phone call, not to mention the manpower of

operators necessary to answer phone calls. When the work item

is done, the engineer may update the status of the work item in

the back-end database, and check out the next item. By using a

Author: Dr.P.Thiyagarajan, Dept. of Computer Science, Central University of

Tamil Nadu, Thiruvarur – 610 005.

71

multifunction device such as a smart phone, the engineer can

also send rich-media content of the work item to the back-end

server, including pictures, audio description, instrumental

measurements, and video clips. The procedure does not require

any manual intervention on the server side. For salespersons

and mobile workers who travel to a customer's site, a mobile

client application running on a mobile device will allow them

to conduct CRM-related business practices onsite, such as

collecting and updating customer data, providing quick

responses to customers' inquiries, checking product

availability, generating real-time quotes for products or

services, and onsite invoicing. Because of the enhanced quality

of service offered by the salesforce, customer loyalty is likely

to be improved. Another benefit of onsite processing is the

increasing granularity of enterprise workflow, leading to agile

and well-justified decision making. Onsite processing can be

done with a single mobile portal, which is a unified mobile

interface to back-end enterprise applications on a mobile

device. The principle challenge to facilitating mobile-enhanced

onsite processing is providing a range of sophisticated

interoperable enterprise business processes on a mobile device

of small form factor, unreliable wireless capability, and limited

computing power. Obviously, a well-designed enterprise

application integration (EAI) will make this a lot easier at the

back end, thus the front end - the much simplified mobile

access application on a mobile device - only has to interface

with EAI rather than individual enterprise applications.

3. Onsite collaboration --- Field engineers, salespersons, and

mobile workers may also use the wireless capability of a

mobile device to communicate with colleagues back at the

office or on other sites. Aside from e-mail, voice mail, and

phone calls, a wide range of communication methods can be

used on a mobile device, including IM, voice over IP, video

streaming, and video conferencing. A major difference between

these tools and consumer-oriented collaboration tools is that

they are well suited for enterprise environment and can be

integrated into other enterprise applications. For example,

location-based presence service in mobile IM is particularly

useful for a user who wants to find out the current work status

of other colleagues. Imagine an enterprise IM application

running on a mobile device that shows the geographic location

of colleagues and their work status. This would improve job

scheduling as well as work item tracking. Field engineers,

Author: Dr.P.Thiyagarajan, Dept. of Computer Science, Central University of

Tamil Nadu, Thiruvarur – 610 005.

72

mobile workers, and salespersons in a conversation can quickly

refer to the same piece of business data retrieved from a

backend enterprise system, thereby improving communication

efficiency and work productivity. Besides, enterprise security is

a major difference that separates mobile enterprise

collaboration tools with the counterparts for the mass public. In

order to deal with the peculiarities of mobile enterprise

applications, a company usually imposes strict policies for the

establishment of secured computing infrastructure as well as

user usage. An example of mobile security in the enterprise is

the discovery of rogue wireless access points. A rogue wireless

access point is an access point installed without authorization

and thus does not conform to enterprise network security

policies. A rogue wireless access point could be a serious

security problem because it exposes a supposedly well-

protected enterprise network. Enterprises often use wireless

intrusion detection systems along with positioning techniques

to approximate the location of rogue access points and then use

a mobile device to pinpoint them. Some wireless intrusion

detection systems even combine location with authentication to

deny access to stations that lie outside a predefined physical

perimeter, such as AirTight SpectraGuard

(http://www.airtightnetworks.net/) and Newbury Watchdog

(http://www.newburynetworks.com).

Author: Dr.P.Thiyagarajan, Dept. of Computer Science, Central University of

Tamil Nadu, Thiruvarur – 610 005.

73

2.7 Check your progress Questions (Multiple Choice

Questions)

1. Which one of the following is not a categories of mobile application

medium types?

a) Mobile Websites b) Games

c) Location Based Services d) Android

2. Which one of the following is the limitation of characters in.SMS?

a) 160 b) 170

c) 180 d) 190

3.The mobile websites are ______.

a) easy to create, maintain, and publish.

b) difficult to support across multiple devices.

c) All of the above d) None of the above

4. Find out the odd one

a) Game b) Windows

c) Android d) IOS

5. Mobile Apps are primary split into three categories. They are ______.

 a) Native, Web, and Hybrid

 b) Licensed, customized, and open source.

 c) Hybrid, exportable and open source.

 a) Customized, prioritized and Web.

 6. Calculator App is an (a) ________ App.

a) Informative b) LBS

c) Enterprise d) Utility

2.8 Answer to Check your progress Questions

1. d) Android

2. a) 160

3. c) All of the above

4. a) Game

5. a) Native, Web, and Hybrid

6. d) Utility

Author: Dr.P.Thiyagarajan, Dept. of Computer Science, Central University of

Tamil Nadu, Thiruvarur – 610 005.

74

2.9 Summary

Mobile Websites, Mobile Web Widgets, Short message

service(SMS), Native Applications, Games, Utility Apps, Location Based

Services(LBS), Informative Apps, and Enterprise Apps are categories of

mobile medium applications.

SMS (short message service) is a text messaging service

component of most of the mobile device. SMS enablement allows

individuals to send an SMS message to a business phone number

(traditional landline) and receive a SMS in return. Providing customers

with the ability to text to a phone number allows organizations to offer

new services that deliver value.

The mobile web refers to browser-based World Wide Web services

accessed from handheld mobile devices, such as smartphones or feature

phones, through a mobile or other wireless network. However, the web is

now more accessible by portable and wireless devices.

Mobile game is a game played on a feature phone, smartphone,

tablet, smartwatch, PDA, portable media. In 1997, Nokia launched the

very successful Snake. Snake (and its variants), that was preinstalled in

most mobile devices manufactured by Nokia, has since become one of the

most played games and is found on more than 350 million devices

worldwide.

Calculator is the best example for utility app. It is used to compute

standard calculations and scientific calculations. Assistive healthcare

systems, recommending social events in a city, requesting the nearest

ATM, restaurant or a retail store, locating people on a map displayed on

the mobile phone, receiving alerts, such as notification of a sale on gas or

warning of a traffic jam, and location-based mobile advertising are some

of the applications of Location based system services.

Informative apps are very use full in Educational online learning

system. Enterprise apps target a wide range of industries and can integrate

with office, purchase, sales and customer service processes.

2.10 Keywords

Mobile Categories, Mobile Applications, SMS, Mobile Websites,

Mobile Web Widgets, Native Applications, Platforms, Games,

Applications, Services, Location Based Services, Informative apps,

Enterprise Apps.

Author: Dr.P.Thiyagarajan, Dept. of Computer Science, Central University of

Tamil Nadu, Thiruvarur – 610 005.

75

2.11 Self Assessment Questions

Short Answer Questions

1. Define the term ‘mobile devices profiles’.

2. Write the categories of mobile applications.

3. Define short message service (SMS)

4. Write the advantages of mobile websites

5. List out some native mobile applications.

6. Define Location Based Services(LBS).

7. Why Informative Apps are very important in learning?

8. How Enterprise app interconnects all areas in an organization?

Long Answer Questions

1. Explain the following concepts in detail

a) Native apps

b) Hybrid apps

c) Web apps

d) Utility apps

2. Discuss the short message service application and its usage in

detail.

3. Explain the usage of mobile web widgets.

4. Why native apps are very essential? Give valid reasons.

5. Discuss game apps in detail.

6. Write the working principles of Location Based Services(LBS).

7. How the Informative Apps will improve the learning process?

8. Explain Enterprise Apps in detail.

9. Explain the following concepts in detail

a) Enterprise Apps

b) Informative Apps

10. Compare and contrast Enterprise apps and Informative apps.

Author: Dr.P.Thiyagarajan, Dept. of Computer Science, Central University of

Tamil Nadu, Thiruvarur – 610 005.

76

2.12 Further readings

1. Mobile Design and Development by Brian Fling, O’Reilly Media,

Inc 2009

2. J2ME: The Complete Reference, James Keogh, Tata McGrawHill

2003

3. . Smart Phone and Next-Generation Mobile Computing by Pei

Zheng and Lionel Ni, Elseveir, 2006.

4. Beginning Android by Mark L. Murphy , Apress 2009

5. H. Lashkari, M. Moradhaseli, Mobile operating systems and

programming: mobile communications, VDM Verlag Dr. Muller,

2011

6. http://opengardensblog.futuretext.com/archives/2008/06/iphone_vs

_symbi_1.html

7. http://www.isecpartners.com/files/iSEC_Securing_Android_Apps.

pdf

8. http://www.ibm.com/developerworks/architecture/library/wi-

arch23.html

Author: Dr.P.Thiyagarajan, Dept. of Computer Science, Central University of

Tamil Nadu, Thiruvarur – 610 005.

77

3. MOBILE INFORMATION

ARCHITECTURE

3.1 Contents of the unit
3.1 Contents of the unit

3.2 Introduction

3.3 Objectives

3.4 Mobile Information Architecture

3.4.1 Sitemaps

3.4.2 Click Streams

3.4.3 Wireframes

3.4.4 Prototyping

3.4.5 Architecture

3.5 Mobile Design

3.5.1 Interpreting Design

3.5.2 Elements of Mobile Design

3.6 Mobile Design tools

3.6.1 Designing for different device

3.6.2 Designing for different screen

3.7 Check your Progress Questions

3.8 Answers to check your progress questions.

3.9. Summary

3.10. Key words

3.11 Self Assessment Questions and answers

3.12 Further Readings

3.2 Introduction

Information architecture (also known as IA), is the foundation of

mobile product. A well-engineered product with good visual design can

still fail because of poor information architecture. The truly successful

mobile products always have a well thought- out information architecture.

From a simple mobile website to an iPhone application, the mobile

information architecture defines not just how your information will be

structured, but also how people will interact with it. This is made

especially tricky when you consider that different devices have different

capabilities and therefore different interaction models.

Author: Dr.P.Thiyagarajan, Dept. of Computer Science, Central University of

Tamil Nadu, Thiruvarur – 610 005.

78

 Take the way people interact with their devices: for example, a

touch device on which the user literally points and clicks, or a more basic

device on which the user uses the directional pad to navigate to the desired

location

3.3 Objectives

 To understand Mobile Information Architecture

 To learn about prototypes

 To learn Mobile design and its tools

3.4 Mobile Information Architecture

The organization of data within an informational space. In other

words, how the user will get to information or perform tasks within a

website or application.

Interaction design

The design of how the user can participate with the information

present, either in a direct or indirect way, meaning how the user will

interact with the website of application to create a more meaningful

experience and accomplish her goals.

Information design

The visual layout of information or how the user will assess

meaning and direction given the information presented to him.

Navigation design

The words used to describe information spaces; the labels or

triggers used to tell the users what something is and to establish the

expectation of what they will find.

Interface design

The design of the visual paradigms used to create action or

understanding.

Mobile Information Architecture

Although information architecture has become a common

discipline in the web industry, unfortunately, the mobile industry—like

software—has only a handful of specialized mobile information architects.

Although mobile information architecture is hardly a discipline in its own

Author: Dr.P.Thiyagarajan, Dept. of Computer Science, Central University of

Tamil Nadu, Thiruvarur – 610 005.

79

right, it certainly ought to be. This is not because it is so dissimilar from its

desktop cousin, but because of context, added technical constraints, and

needing to display on a smaller screen as much information as we would

on a desktop.

Keeping It Simple

When thinking about your mobile information architecture, you

want to keep it as simple as possible.

Support your defined goals

If something doesn’t support the defined goals, lose it. Go back to

your user goals and needs, and identify the tasks that map to them. Find

those needs and fill them.

Ask yourself: what need does my application fill? What are people

trying to do here? What is their primary goal? Once you understand that, it

is a simple process of reverse engineering the path from where they want

to be to where they are starting. Cut out everything else—your site or

application doesn’t need it.

For example, to get some news and information on a mobile

device, you need to first ask what the goal is. What is the need you are

trying to fill? Then you need to apply context. Where are your users? What

are they doing? Are they waiting for the bus? Do they have only a minute

to spare? Or, do they have five minutes to spare? With these answers, you

get your information architecture.

Clear, simple labels

Good trigger labels, the words we use to describe each link or

action, are crucial in Mobile. Words like “products” or “services” aren’t

good trigger labels. They don’t tell us anything about that content or what

we can expect. Now, I would argue that good trigger labels are crucial in

the Web as well, that we’ve become lazy and we assume so much about

the user that we ignore the use of good trigger labels.

Users have a much higher threshold of pain when clicking about on

a desktop site or application, hunting and pecking for tasty morsels.

Mobile performs short, to-the-point, get-it-quick, and get-out types of

tasks. What is convenient on the desktop might be a deal breaker on

mobile. Keep all your labels short and descriptive, and never try to be

clever with the words you use to evoke action.

Author: Dr.P.Thiyagarajan, Dept. of Computer Science, Central University of

Tamil Nadu, Thiruvarur – 610 005.

80

3.4.1 Site Maps

Site maps are a classic information architecture deliverable. They

visually represent the relationship of content to other content and provide a

map for how the user will travel through the informational space, as shown

in Figure 3-1.

Mobile site maps aren’t that dissimilar from site maps we might

use on the Web. But there are a few tips specific to mobile that we want to

consider.

Figure 3-1 An example mobile site map

Limit opportunities for mistakes

In the mobile context, tasks are short and users have limited time to

perform them. And with mobile websites, we can’t assume that the users

have access to a reliable broadband connection that allows them to quickly

go back to the previous page. In addition, the users more often than not

have to pay for each page view in data charges. So not only do they pay

cash for viewing the wrong page by mistake, they pay to again download

the page they started from: we can’t assume that pages will be cached

properly. Therefore it is advised to limit users’ options.

Confirm the path by teasing content

After the users have selected a path, it isn’t always clear whether

they are getting to where they need to be. Information-heavy sites and

applications often employ nested or drill-down architectures, forcing the

Author: Dr.P.Thiyagarajan, Dept. of Computer Science, Central University of

Tamil Nadu, Thiruvarur – 610 005.

81

user to select category after category to get to their target. To reduce

risking the user’s time and money, we want to make sure we present

enough information for the user to wade through our information

architecture successfully.

On the Web, we take these risks very lightly, but with mobile, we

must give our users a helping hand. We do this by teasing content within

each category— that is, providing at least one content item per category.

Figure 3-2 Teasing content to confirm the user’s expectations of the

content within

The challenge with ringtone sites is you have a lot of items,

grouped by artist, album, genre, and so on. The user starts with a goal like

“We want a new ringtone” and finds an item that suits his taste within a

catalog of tens of thousands of items. In order to make sense of a vast

inventory of content, we have to group, subgroup, and sometimes even

subgroup again, creating a drill-down path for the user to browse.

Author: Dr.P.Thiyagarajan, Dept. of Computer Science, Central University of

Tamil Nadu, Thiruvarur – 610 005.

82

In Figure 3-2, you can see in a constrained screen that teasing the

first few items of the page provides the user with a much more intuitive

interface, immediately indicating what type of content the user can expect.

We immediately saw that users were finding content more quickly,

driving up our sales.

3.4.2 Clickstreams

Clickstream is a term used for showing the behavior on websites,

displaying the order in which users travel through a site’s information

architecture, usually based on data gathered from server logs. Clickstreams

are usually historical, used to see the flaws in your information

architecture, typically using heat-mapping or simple percentages to show

where your users are going. I’ve always found them to be a useful tool for

rearchitecting large websites.

Figure 3-3 An example clickstream for an iPhone web application

Author: Dr.P.Thiyagarajan, Dept. of Computer Science, Central University of

Tamil Nadu, Thiruvarur – 610 005.

83

However, information architecture in mobile is more like software

than it is the Web, meaning that you create clickstreams in the beginning,

not the end. This maps the ideal path the user will take to perform

common tasks. Being able to visually lay out the path users will take gives

you a holistic or bird’s-eye view of your mobile information architecture,

just as a road map does. When you can see all the paths next to each other

and take a step back, you start to see shortcuts and how you can get users

to their goal faster or easier, as shown in Figure 3-3.

Now the business analyst in you is probably saying, “Just create

user or process flows,” such as the esoteric diagram shown in Figure 3-4,

which is made up of boxes and diamonds that look more like circuit board

diagrams than an information architecture.

Figure 3-4 An example process flow diagram

A good architect’s job is to create a map of user goals, not map out

every technical contingency or edge case. Too often, process flows go

down a slippery slope of adding every project requirement, bogging down

the user experience with unnecessary distractions, rather than focusing on

streamlining the experience. Remember, in mobile, our job is to keep it as

Author: Dr.P.Thiyagarajan, Dept. of Computer Science, Central University of

Tamil Nadu, Thiruvarur – 610 005.

84

simple as possible. We need to have an unwavering focus on defining an

excellent user experience first and foremost. Anything that distracts us

from that goal is just a distraction.

Figure 3-5 An example of an iPhone web application wireframe, intended

to be low fidelity to prevent confusion of visual design concepts with

information design concepts

3.4.3 Wireframes

Wireframes are a way to lay out information on the page, also

referred to as information design. Site maps show how our content is

organized in our informational space; wireframes show how the user will

directly interact with it. Wireframes are like the peanut butter to the site

map jelly in our information architecture sandwich. Wireframes like the

one in Figure 3-4 serve to make our information space tangible and useful.

Author: Dr.P.Thiyagarajan, Dept. of Computer Science, Central University of

Tamil Nadu, Thiruvarur – 610 005.

85

Figure 3-6 Using annotations to indicate the desired interactions of the site

or application

But the purpose of wireframes is not just to provide a visual for our

site map; they also serve to separate layout from visual design, defining

how the user will interact with the experience. How do we lay out our

navigation? What visual or interaction metaphors will we use to evoke

action? What are the best ways to communicate and show information in

the assumed context of the user? These questions and many more are

answered with wireframes.

The “in-place” interactions, or areas where the user can interact

with an element without leaving the page. This can be done with Ajax or a

little show/hide JavaScript. These interactions can include copious

amounts of annotation, describing each content area in as much length as

you can fit in the margins of the page, as shown in Figure 3-6.

Author: Dr.P.Thiyagarajan, Dept. of Computer Science, Central University of

Tamil Nadu, Thiruvarur – 610 005.

86

3.4.4 Prototyping

Wireframes lack the capability to communicate more complex,

often in-place, interactions of mobile experiences. This is where

prototypes come in.

Prototypes might sound like a scary (or costly) step in the process.

Some view them as redundant or too time-consuming, preferring to jump

in and start coding things. But as with wireframes, some sort of prototype

has saved both time and money. The following sections discuss some ways

to do some simple and fast mobile prototyping.

Paper prototypes

The most basic level we have is paper prototyping: taking our

printed-out wireframes or even drawings of our interface, like the one

shown in Figure 3-7, and putting them in front of people.

Figure 3-7 A paper prototype, while the interaction is nothing more than

drawings on note cards

Author: Dr.P.Thiyagarajan, Dept. of Computer Science, Central University of

Tamil Nadu, Thiruvarur – 610 005.

87

Figure 3-8 A touch interface paper prototype next to its smaller sibling

Create a basic script of tasks (hopefully based on either context or

user input) and ask users to perform them, pointing to what they would do.

You act as the device, changing the screens for them. For paper

prototypes, use small blank note cards, and for lower-end devices, use

business card- sized paper (Figure 3-8).

Context prototype

The next step is creating a context prototype (Figure 3-9). Take a

higher-end device that enables you to load full-screen images on it. Take

your wireframes or sketches and load them onto the device, sized to fill the

device screen. Leave the office. Go for a walk down to your nearest cafe.

Or get on a bus or a train. As you are traveling about, pull out your device

and start looking your interface in the various contexts you find yourself

currently in.

Pay particular attention to what you are thinking and your physical

behavior while you are using your interface and then write it down. If you

are brave and don’t have strict nondisclosure issues, ask the people around

you to use it, too. I wouldn’t bother with timing interactions or sessions,

but try to keep an eye on a clock to determine how long the average

session is.

Author: Dr.P.Thiyagarajan, Dept. of Computer Science, Central University of

Tamil Nadu, Thiruvarur – 610 005.

88

Figure 3-9 An example of a context prototype or taking images loaded

onto a device and testing them in the mobile context

HTML prototypes

The third step is creating a lightweight, semi functional static

prototype using XHTML,CSS, and JavaScript, if available. This is a

prototype that you can actually load onto a device and produce the nearest

experience to the final product, but with static dummy content and data

(Figure 3-10). It takes a little extra time, but it is worth the effort.

With a static XHTML prototype, you use all the device metaphors

of navigation, you see how much content will really be displayed on

screen (it is always less than you expect), and you have to deal with slow

load times and network latency. In short, you will feel the same pains your

user will go through.

Whatever route you wish to take, building a mobile prototype takes

you one very big leap forward to creating a better mobile experience.

Author: Dr.P.Thiyagarajan, Dept. of Computer Science, Central University of

Tamil Nadu, Thiruvarur – 610 005.

89

Figure 3-10 An XHTML prototype that you can actually interact with on

real mobile devices

3.4.5 Architecture
Mobile app architecture is a set of techniques and patterns used to

develop fully structured mobile applications based on industry and vendor

specific standards. While formulating the app architecture, the procedures

that work on the wireless mobile device like smartphones and tablets are

also taken into consideration.

Different Information Architecture for Different Devices

Depending on which devices you need to support, mobile

wireframes can range from the very basic to the complex. On the higher-

end devices with larger screens, we might be inclined to add more

interactions, buttons, and other clutter to the screen, but this would be a

mistake. Just because the user might have a more advanced phone, that

doesn’t mean that he is giving you license to pack his screen with as much

information as you can muster.

The motivations, goals, and how users will interact with a mobile

experience are the same at the low end as they are on a high-end device.

For the latter, you just have better tools to express the content. You can

learn a lot from designing for the lower end first.

Author: Dr.P.Thiyagarajan, Dept. of Computer Science, Central University of

Tamil Nadu, Thiruvarur – 610 005.

90

The greatest challenge in creating valuable experiences knows

when to lose what you don’t need. You don’t have a choice on lower-end

devices—it must be simple.

When designing for both, it is best to try and to keep your

information architecture as close to each other as possible without

sacrificing the user experience. They say that simple design is the hardest

design, and this principle certainly is true when designing information

architecture for mobile devices.

The Design Myth

A little secret about interactive design is that people don’t respond

to the visual aesthetic as much as you might think. What colors you use,

whether you use square or rounded corners, or, gradients or flat

backgrounds, helps build first impressions, but it doesn’t do too much to

improve the user’s experience.Users appreciate good design, but they are

quickly indifferent about the visual aesthetic and move almost

immediately to the layout (information design), what things are called

(taxonomy), the findability of content, and how intuitive it is to perform

tasks. These are all facets of information architecture.

Figure 3-11 Comparing visual design to information design of the iPhone

application Tweetie

Author: Dr.P.Thiyagarajan, Dept. of Computer Science, Central University of

Tamil Nadu, Thiruvarur – 610 005.

91

Just look at one of the top-selling iPhone Twitter applications,

Tweetie, shown in Figure 3-11. Many consider Tweetie to be a “well-

designed” application, but because it is built from the same API as all

other iPhone applications, at first glance there is little that is actually

visually distinctive between this and other applications. What makes this

application “well designed” is how the content is applied to the context of

the user—in other words, the mobile information architecture.

In this example, the information design uses common layout

metaphors, highlighted on the righthand side of Figure 3-11 to provide the

user with familiar placement of common tasks, allowing the user to

perform repetitive tasks common with most Twitter applications. The

point is great information design is often mistaken for great visual design.

Most non–information architects almost always do information

architecture in some form or another; often, they don’t even know they are

doing it. They might do a few wireframes, or maybe a site map.

Sometimes designers will jump in and incorporate information architecture

deliverables directly into their designs. By not focusing on the information

architecture exclusively from the start, you risk confusing your disciplines,

your deliverables, and ultimately your direction. The more time you spend

focusing on just your information architecture, the faster and less costly

your project will be.

3.5 Mobile Design

When building mobile experiences, it is impossible to create a

great experience without three ingredients: context, information

architecture, and visual design. The visual design of your experience is the

direct representation of everything underneath; it is the first impression the

user will have. A great design gives the user high expectations of your site

or application; a poor design leads to lower expectations.

Users’ expectations translate to value and trust. In the mobile

space, where content is often “free” (they still need to pay for data

charges), users often have low expectations, due to the limitations of the

canvas. Confusing site structures and slow download speeds reinforce

those initial low expectations. In the downloadable application space,

where application design can be much more robust, users must purchase

applications almost sight unseen. For example, they may see just a small

screenshot of your application or game. But if the application doesn’t meet

Author: Dr.P.Thiyagarajan, Dept. of Computer Science, Central University of

Tamil Nadu, Thiruvarur – 610 005.

92

the higher expectations of the design, your application downloads will

drop like a stone. The design, that first impression, determines right from

the start if the user will spend five seconds, five minutes, or five hours

with your product.

This leads us to the most significant challenge in mobile design:

creativity. You can’t always be as creative as you want to be. Many

devices just can’t support complex designs for every channel; for example,

on many lower-end devices, the mobile web experience may just be a list

of links. But every device has the capability to create a best in-device

experience; it just depends on how you take advantage of the application

medium and context that you plan to use.

On computers, there is a strategy called “lowest common

denominator”: in order to reach the widest possible number of platforms,

you create a product that works on the most common architectural

components on all platforms (see Figure 3-12). Well, in computers, where

you may have under a dozen different platforms, this is a great concept,

but in mobile development, where you might be dealing with hundreds of

different devices, it becomes a necessity.

Author: Dr.P.Thiyagarajan, Dept. of Computer Science, Central University of

Tamil Nadu, Thiruvarur – 610 005.

93

Figure 3-12 A lowest-common-denominator design

Typically, mobile design starts with the lowest common

denominator. As a designer, you ask yourself, “How do I visually express

this content across the most possible devices?” You start with the most

basic of designs, catering to the limitations of the device. You try to

pepper in some nice-looking elements until you’ve reached the extent that

the device platform can tolerate. You are left with a Frankenstein-like

design that only your mother could love.

3.5.1 Interpreting Design

A 25-year veteran graphic designer spent creating print designs and

advertisements, defining precisely what each design would be, down to the

picas and points. His method of design meant creating a vision for how to

communicate information or ideas in his head, and then duplicating that on

the printed page. In his mind, it wasn’t right unless it was exactly like his

original vision.

Author: Dr.P.Thiyagarajan, Dept. of Computer Science, Central University of

Tamil Nadu, Thiruvarur – 610 005.

94

He was offered with website. He spent months obsessing about

exactly how his site looked. The method of communicating information

was to structure it with design, use design elements to enhance the

information, and enable the user to interpret it. It is important to remember

that every experience is unique. That experience depends on the user’s

screen size, web browser, text settings, the speed of his computer, and his

connection to the Internet. There are simply too many variables for us to

try to “control” the design completely.

This frustrated the veteran graphic designer. He could not look at

interpreted designs without trying to precisely position every element on

the page. And if the browser window is resized, he would get angry.

The great thing about design—it is completely subjective, giving designers

plenty of things to argue about. We just had two very different ways of

using design to express information, based on the fact that we came from

different media. He wanted it to treat the design precisely, to recreate his

vision exactly.

We wanted it to be flexible, catering to the unknown variables of

the medium. The reality is that we probably should have met someplace in

the middle.

Mobile design isn’t that different. Precise designs might look

better, but they can be brutal to implement. More flexible designs might

not be much to look at, but they work for the most users, or the lowest

common denominator. But more than that, our backgrounds and our

training can actually get in the way of creating the best design for the

medium. We like to apply the same rules to whatever the problem in front

of us might be. In mobile design, you interpret what you know about good

design and translate it to this new medium that is both technologically

precise and at times incredibly unforgiving, and you provide the design

with the flexibility to present information the way you envision on a

number of different devices.

In the end, the graphic designer and I scrapped the work, and he

provided me his pica perfect designs as giant images, which I turned into a

series of massive image maps.

The Mobile Design Tent-Pole

In Hollywood, executives like to use the term “tent-pole” to

describe their movies and television shows. The term has dual meanings:

one is business, and the other creative.

Author: Dr.P.Thiyagarajan, Dept. of Computer Science, Central University of

Tamil Nadu, Thiruvarur – 610 005.

95

The business goal of a tent-pole production is to support or prop up

the losses from other productions. However, to create a tent-pole

production, the creators involved must make an artistic work that they

know will appeal to the largest possible audience, providing something for

everyone. You probably know tent-pole movies as “blockbusters”; in

television, they are known as “anchor” shows.

Trying to reach the widest possible audience poses a problem.

Hollywood is learning with great pains that with so many entertainment

options and with today’s audience being so hard to reach through

traditional advertising channels, tent-pole productions are failing. As the

number of social niches increases, it becomes difficult to satisfy the

specific tastes of each social group. What one group finds hysterically

funny, several other groups might find offensive. Today, tent-pole

productions often come off as bland and half-hearted, failing to appease

anyone.

One of the most interesting examples of how the tide turned in

entertainment is with the animated films of Disney versus those of Pixar.

For years, Disney produced tentpole family fare quite successfully. But as

competition increased, notably from Pixar, Disney films would spend

millions to create stale and dated films, losing audiences and revenue.

Meanwhile, Pixar found that their movies could be successful by avoiding

the traditional storytelling formats of animated film, which Disney

essentially defined. Instead, Pixar based their stories around specific

emotional themes and was able to connect with audiences of all ages, in

multiple cultures and across multiple niches.

In 2006, Disney acquired Pixar, making its top executives the new

leaders of all Disney creative projects. Disney realized that it needed to be

more Pixar and less Disney in order to grow and adapt to today’s changing

audiences and niches. This is something that Pixar was doing correctly.

Back in the world of mobile design, the de facto strategy is to create tent-

pole products.

Like the old days of Disney, the strategy is to sink millions into

creating tent-pole products, or products that support the largest number of

devices that no one will ever use. They are creatively stale, they lack

inspiration, and they simply exist with no meaningful purpose to the user.

They make the same mistake Disney made, thinking that it could simply

put something on the market that might not be the best quality, but because

it carried the Disney name, people would buy it.

Author: Dr.P.Thiyagarajan, Dept. of Computer Science, Central University of

Tamil Nadu, Thiruvarur – 610 005.

96

To have a successful mobile design, you have to think like Pixar.

Find that emotional connection, that fundamental need that serves many

audiences, many cultures, and many niches and design experiences. Too

often, designers simply echo the visual trends of the day, mimicking the

inspiration of other. But with mobile design, once you find that essential

thing, that chewy nougat we call “context” that lives at the center of your

product, then you will find ample inspiration of your own to start creating

designs that translate not only across multiple devices, but across multiple

media.

Sure, there are countless examples of poorly designed mobile

products that are considered a success. You only need to look as far as the

nearest mobile app store to find them. This is because of the sight unseen

nature of mobile commerce. Traditionally, you couldn’t demo—or in some

cases even see—screenshots of a game or mobile application before you

bought it. You simply had to purchase it and find out if it was any good.

Apple’s App Store quickly changed that. You can clearly see that the best-

selling games and applications for the iPhone are the ones with the best

designs (Figure 3-13).

Figure 3-13 The app icon design greatly influences the user’s expectation

of quality

Author: Dr.P.Thiyagarajan, Dept. of Computer Science, Central University of

Tamil Nadu, Thiruvarur – 610 005.

97

Users look at multiple screenshots (Figure 3-14), read the user

reviews, and judge the product based on the quality of its icon and of the

screenshots before they buy.

Figure 3-14 Users are able to determine the quality of the app, largely

influenced by the design, before they make a purchase

The Apple App Store is proving everyday that mobile design

doesn’t have to start with tent-pole lowest-common-denominator

products—it can instead start with providing the best possible experience

and tailoring that experience to the market that wants it most.

Designing for the Best Possible Experience

When the first iPhone came out, I got in a lot of trouble from my

web and mobile peers for publicly saying, “The iPhone is the only mobile

device that matters right now.” They would argue, “What about ABC or

XYZ platforms?” My response was that those are important, but the

iPhone provides the best possible experience and that is where consumers

will go. Since those days, we’ve seen the iPhone shatter just about every

record in mobile devices, becoming one of the best-selling phones ever

and one of the most used mobile browsers in the world—two-thirds of

mobile browsing in the U.S. comes from an iPhone or an iPod touch, not

Author: Dr.P.Thiyagarajan, Dept. of Computer Science, Central University of

Tamil Nadu, Thiruvarur – 610 005.

98

to mention that more than a billion mobile applications have been sold for

these devices in under a year.

Recently, I was speaking at a conference where I ran into one of

my peers, who questioned my premise that the iPhone was the most

important device in mobile. He came up to me, and the first thing he said

was, “I remember you telling me ages ago that the iPhone is the only

device that mattered, and I didn’t believe you. And here we are today

focusing our business on the iPhone.” It was an odd (and rare) reverse I-

told-you-so moment. Here was this seasoned mobile guy telling me that

his instincts had been wrong and my instincts had been right. I thought it

must have been hard for him to go against his instincts and shift not just

his thinking but his entire business toward supporting one popular device.

The lesson here is that although it may defy your business instincts to

focus your product on just one device, in mobile development, the risks

and costs of creating that tentpole product are just too high. This lesson is

so easily seen through bad or just plain uninspired mobile design. Asking

creative people to create uninspiring work is a fast track to mediocrity.

Here is a design solution: design for the best possible experience.

Actually, don’t just design for it: focus on creating the best possible

experience with unwavering passion and commitment. Iterate, tweak, and

fine-tune until you get it right. Anything less is simply unacceptable. Do

not get hindered by the constraints of the technology. Phrases like “lowest

common denominator” cannot be part of the designer’s vocabulary. Your

design—no, your work of art—should serve as the shining example of

what the experience should be, not what it can be. Trying to create a

mobile design in the context of the device constraints isn’t where you start;

it is where you should end.

I think one of the greatest mistakes we in the mobile community

make is being unwilling to or feeling incapable of thinking forward. The

tendency to frame solutions in the past (past devices, past standards)

applies only to those low-quality, something-foreveryone- but-getting-

nothing tent-pole products. Great designs are not unlike great leaps

forward in innovation. They come from shedding the baggage regarding

how things are done and focus on giving people what they want or what

they need.

3.5.2 The Elements of Mobile Design
The good design requires three abilities: the first is a natural gift

for being able to see visually how something should look that produces a

desired emotion with the target audience. The second is the ability to

Author: Dr.P.Thiyagarajan, Dept. of Computer Science, Central University of

Tamil Nadu, Thiruvarur – 610 005.

99

manifest that vision into something for others to see, use, or participate in.

The third is to know how to utilize the medium to achieve your design

goals.

The six elements of mobile design that you need to consider,

starting with the context and layering in visual elements or laying out

content to achieve the design goal. Then, you need to understand how to

use the specific tools to create mobile design, and finally, you need to

understand the specific design considerations of the mobile medium.

Context

The context is core to the mobile experience. As the designer, it is

your job to make sure that the user can figure out how to address context

using your app. Make sure you do your homework to answer the following

questions:

 Who are the users? What do you know about them? What type of

behavior can you assume or predict about the users?

 What is happening? What are the circumstances in which the users

will best absorb the content you intend to present?

 When will they interact? Are they at home and have large amounts

of time? Are they at work where they have short periods of time?

Will they have idle periods of time while waiting for a train, for

example?

 Where are the users? Are they in a public space or a private space?

Are they inside or outside? Is it day or is it night?

 Why will they use your app? What value will they gain from your

content or services in their present situation?

 How are they using their mobile device? Is it held in their hand or

in their pocket? How are they holding it? Open or closed? Portrait

or landscape?

The answers to these questions will greatly affect the course of

your design. Treat these questions as a checklist to your design from start

to finish. They can provide not only great inspiration for design

challenges, but justification for your design decisions later.

Message

Another design element is your message, or what you are trying to

say about your site or application visually. One might also call it the

“branding,” although I see branding and messaging as two different things.

Your message is the overall mental impression you create explicitly

through visual design. I like to think of it as the holistic or at times

instinctual reaction someone will have to your design. If you take a step

Author: Dr.P.Thiyagarajan, Dept. of Computer Science, Central University of

Tamil Nadu, Thiruvarur – 610 005.

100

back, and look at a design from a distance, what is your impression? Or

conversely, look at a design for 30 seconds, and then put it down. What

words would you use to describe the experience?

Branding shouldn’t be confused with messaging. Branding is the

impression your company name and logo gives—essentially, your

reputation. Branding serves to reinforce the message with authority, not

deliver it. In mobile, the opportunities for branding are limited, but the

need for messaging is great. With such limited real estate, the users don’t

care about your brand, but they will care about the messaging, asking

themselves questions like, “What can this do for me?” or “Why is this

important to me?”

Your approach to the design will define that message and create

expectations. A sparse, minimalist design with lots of whitespace will tell

the user to expect a focus on content. A “heavy” design with use of dark

colors and lots of graphics will tell the user to expect something more

immersive.

For example, hold the book away from you and look at each of the

designs in Figure 3-15; try not to focus too heavily on the content. What

do each of these designs “say” to you?

Figure 3-15 What is the message for each of these designs?

Which of the following designs provide a message? What do they say to

you?

Yahoo!

Yahoo! sort of delivers a message. This app provides a clean

interface, putting a focus on search and location, using color to separate it

from the news content. But I’m not exactly sure what it is saying. Words

you might use to describe the message are crisp, clean, and sharp.

Author: Dr.P.Thiyagarajan, Dept. of Computer Science, Central University of

Tamil Nadu, Thiruvarur – 610 005.

101

ESPN

The ESPN site clearly is missing a message. It is heavily text-

based, trying to put a lot of content above the fold, but doesn’t exactly

deliver a message of any kind. If you took out the ESPN logo, you likely

would have indifferent expectations of this site; it could be about anything,

as the design doesn’t help set expectations for the user in any way. Words

you might use to describe the message: bold, cluttered, and content-heavy.

Disney

Disney creates a message with its design. It gives you a lot to look

at—probably too much—but it clearly tries to say that the company is

about characters for a younger audience. Words you might use to describe

the message: bold, busy, and disorienting.

Wikipedia

The Wikipedia design clearly establishes a message. With a

prominent search and text-heavy layout featuring an article, you know

what you are getting with this design. Words you might use to describe the

message: clean, minimal, and text-heavy.

Amazon

Amazon sort of creates a message. Although there are some wasted

opportunities above the fold with the odd ad placement, you can see that it

is mostly about products (which is improved even more if you scroll

down). Words you might use to describe the message: minimal but messy,

product-heavy, and disorienting. The words you might use to describe

these designs might be completely different than mine—thus the beauty

and the curse of visual design. The important thing isn’t my opinion—it is

the opinion of your user. Does the design convey the right message to your

user in the right context? If you aren’t sure, it might be a good time to find

out.

Look and Feel

The concept of “look and feel” is an odd one, being subjective and

hard to define. Typically, look and feel is used to describe appearance, as

in “I want a clean look and feel” or “I want a usable look and feel.” The

problem is: as a mobile designer, what does it mean? And how is that

different than messaging?

I think of look and feel in a literal sense, as something real and

tactile that the users can “look” at, then “feel”—something they can touch

or interact with. Look and feel is used to evoke action—how the user will

Author: Dr.P.Thiyagarajan, Dept. of Computer Science, Central University of

Tamil Nadu, Thiruvarur – 610 005.

102

use an interface. Messaging is holistic, as the expectation the users will

have about how you will address their context. It is easy to confuse the

two, because “feel” can be interpreted to mean our emotional reaction to

design and the role of messaging I prefer to keep the concept of look and

feel grounded in a tangible design, something I can clearly describe and

show to users. I often find myself explaining the look and feel with the

word “because,” with a cause-and-effect rationale for design decisions, as

in “The user will press this button because...” or “The user will go to this

screen because…” followed by a reason why a button or control is

designed a certain way.

Establishing a look and feel usually comes from wherever design

inspiration comes from. However, your personal inspiration can be a hard

thing to justify. Therefore we have “design patterns,” or documented

solutions to design problems, sometimes referred to as style guides. On

large mobile projects or in companies with multiple designers, a style

guide or pattern library is crucial, maintaining consistency in the look and

feel and reducing the need for each design decision to be justified. For

example, in Figure 3-16 you can see the site Pattern Tap, which is a visual

collection of many user interface patterns meant for websites and web

applications, but there is no reason why it can’t serve as inspiration for

your mobile projects as well.

In Figure 3-17 you can see an example of a mobile design pattern.

Although a lot of elements go into making Apple’s App Store successful,

the most important design element is how it looks and feels. Apple

includes a robust user interface tool that enables developers to use prebuilt

components, supported with detailed Human Interface Guidelines (or

HIG) of how to use them, similar to a pattern library.

This means that a developer can just sit down and create an iPhone

application that looks like it came from Apple in a matter of minutes.

During the App Store submission process, Apple then ensures that the

developer uses these tools correctly according to the HIG.

The look and feel can either be consistent with the stock user

interface elements that Apple provides; they can be customized, often

retaining the “spirit” of Apple’s original design; or an entirely new look

and feel can be defined—this approach is often used for immersive

experiences.

The stock user experience that Apple provides is a great example

of how look and feel works to supporting messaging. For the end user, the

Author: Dr.P.Thiyagarajan, Dept. of Computer Science, Central University of

Tamil Nadu, Thiruvarur – 610 005.

103

design sends a clear message: by using the same visual interface

metaphors that Apple uses throughout the iPhone, I can expect the action,

or how this control will behave, but I can also expect the same level of

quality. This invokes the message of trust and quality in the application

and in the platform as a whole. Apple isn’t the first to use this shared look

and feel model in mobile—in fact, it is incredibly common with most

smartphone platforms—but they are surely making it incredibly

successful, with a massive catalog of apps and the sales to support it.

My advice to would-be mobile designers is be creative and

remember the context. Like in the early days of the Web, people tend to be

skeptical about mobile experiences. The modal context of the user—in this

case, what device he is using—should be considered during the design, as

it will help to establish the user’s expectations of the experience.

Figure 3-16 Pattern Tap shows a number of user interface patterns that

help to establish look and feel

You can leverage this trust to your advantage, or you can strike out

on your own and forge your own metaphors. As long as you know your

users and the preferred mode of context, you can create a look and feel

that is right for them.

Author: Dr.P.Thiyagarajan, Dept. of Computer Science, Central University of

Tamil Nadu, Thiruvarur – 610 005.

104

Figure 3-17 Design4Mobile provides a list of common mobile design

patterns

Layout

Layout is an important design element, because it is how the user

will visually process the page, but the structural and visual components of

layout often get merged together, creating confusion and making your

design more difficult to produce.

The first time layout should rear its head is during information

architecture. In fact, I prefer to make about 90 percent of my layout

decisions during the information architecture period. I ask myself

questions like: where should the navigation go on the page or screen?

What kind of navigation type should I use? Should I use tabs or a list?

What about a sidebar for larger screens? All of these should be answered

when defining the information architecture and before you begin to design.

Why define the layout before the mobile design? Design is just too

subjective of an issue. If you are creating a design for anyone but yourself,

chances are good that there will be multiple loosely-based-on-experience

opinions that will be offered and debated.

There is no right answer—only opinions and gut instincts. Plus, in

corporate environments you have internal politics you have to consider,

Author: Dr.P.Thiyagarajan, Dept. of Computer Science, Central University of

Tamil Nadu, Thiruvarur – 610 005.

105

where the design opinions of the CEO or Chief Marketing Officer (CMO)

might influence a design direction more than, say, the Creative Director or

Design Director.

By defining design elements like layout prior to actually applying

the look and feel, you can separate the discussion. As a self-taught

designer, I started out in this business making designs for my own

projects. I could just put pen to paper and tweak it to my heart’s content. If

I wanted to radically change the layout, I could. When I started my mobile

design career with my first mobile company more than a decade ago, I

realized that this approach didn’t work. The majority of comments that

reviewers would make were about the layout. They focused on the

headers, the navigation, the footer, or how content blocks are laid out, and

so on. But their feedback got muddied with the “look and feel, the colors,

and other design elements.”

Reviewers do make remarks like “I like the navigation list, but can

you make it look more raised?” Most designers don’t hear that; they hear

“The navigation isn’t right, do it again.” But, with this kind of feedback,

there are two important pieces of information about different types of

design. First, there is confirmation that the navigation and layout are

correct. Second, there is a question about the “look and feel.” Because

designers hear “Do it again,” they typically redo the layout, even though it

was actually fine.

Creating mobile designs in an environment with multiple reviewers

is all about getting the right feedback at the right time. Your job is to

create a manifestation of a shared vision. Layout is one of the elements

you can present early on and discuss independently. People confuse the

quality and fidelity of your deliverables as design. By keeping it basic, you

don’t risk having reviewers confuse professionalism with design.

The irony is that as I become more adept at defining layouts, I

make them of increasingly lower fidelity. For example, when I show my

mobile design layouts as wireframes during the information architecture

phase, I intentionally present them on blueprint paper, using handwriting

fonts for my annotations (Figure 3-18). It also helps to say that this is not a

design, it is a layout, so please give me feedback on the layout.

Different layouts for different devices

The second part of layout design is how to visually represent

content. In mobile design, the primary content element you deal with the is

navigation. Whether you are designing a site or app, you need to provide

Author: Dr.P.Thiyagarajan, Dept. of Computer Science, Central University of

Tamil Nadu, Thiruvarur – 610 005.

106

users with methods of performing tasks, navigating to other pages, or

reading and interacting with content. This can vary, depending on the

devices you support.

Figure 3-18 Using a low-fidelity wireframe to define the layout design

element before visual design

There are two distinct types of navigation layouts for mobile

devices: touch and scroll. With touch, you literally point to where you

want to go; therefore, navigation can be anywhere on the screen. But we

tend to see most of the primary actions or navigation areas living at the

bottom of the screen and secondary actions living at the top of the screen,

with the area in between serving as the content area, like what is shown in

Figure 3-19.

Author: Dr.P.Thiyagarajan, Dept. of Computer Science, Central University of

Tamil Nadu, Thiruvarur – 610 005.

107

Figure 3-19 iPhone HIG, showing the layout dimensions of Safari on the

iPhone

This is the opposite of the scroll navigation type, where the

device’s D-pad is used to go left, right, up, or down. When designing for

this type of device, the primary and often the secondary actions should live

at the top of the screen. This is so the user doesn’t have to press down

dozens of times to get to the important stuff. In Figure 3-20, you can

actually see by the bold outline that the first item selected on the screen is

the link around the logo.

When dealing with scroll navigation, you also have to make the

choice of whether to display navigation horizontally or vertically.

Visually, horizontally makes a bit more sense, but when you consider that

it forces the user to awkwardly move left and right, it can quickly become

a bit cumbersome for the user to deal with. There is no right or wrong way

to do it, but my advice is just to try and keep it as simple as possible.

Fixed versus fluid

Another layout consideration is how your design will scale as the

device orientation changes, for example if the device is rotated from

portrait mode to landscape and vice versa. This is typically described as

either being fixed (a set number of pixels wide), or fluid (having the ability

to scale to the full width of the screen regardless of the device orientation).

Author: Dr.P.Thiyagarajan, Dept. of Computer Science, Central University of

Tamil Nadu, Thiruvarur – 610 005.

108

Figure 3-20 Example layout of a scroll-based application where the user

had to press the D-pad past each link to scroll the page

Orientation switching has become commonplace in mobile devices,

and your design should always provide the user with a means to scale the

interface to take full advantage of screen real estate.

Color

The fifth design element, color, is hard to talk about in a black-and-

white book. Maybe it is fitting, because it wasn’t that long ago that mobile

screens were available only in black and white (well, technically, it was

black on a green screen). These days, we have nearly the entire spectrum

of colors to choose from for mobile designs.

The most common obstacle you encounter when dealing with color

is mobile screens, which come in a number of different color or bit depths,

meaning the number of bits (binary digits) used to represent the color of a

single pixel in a bitmapped image. When complex designs are displayed

on different mobile devices, the limited color depth on one device can

cause banding, or unwanted posterization in the image.

For an example of posterization, the technical term for when the

gradation of tone is replaced with regions of fewer tones, see in Figure 3-

Author: Dr.P.Thiyagarajan, Dept. of Computer Science, Central University of

Tamil Nadu, Thiruvarur – 610 005.

109

21 how dramatically the color depth can affect the quality of a photo or

gradient, producing banding in several parts in the image.

Figure 3-21 An example of different levels of posterization that can occur

across multiple device color depths

Different devices have different color depths. In Table 3-1, you can

see the supported colors and a few example devices.

Table 3-1 Supported colors and example devices

The psychology of color

People respond to different colors differently. It is fairly well

known that different colors produce different emotions in people, but

surprisingly few talk about it outside of art school. Thinking about the

emotions that colors evoke in people is an important aspect of mobile

design, which is such a personal medium that tends to be used in personal

ways. Using the right colors can be useful for delivering the right message

and setting expectations.

One of the examples I used earlier was the ESPN mobile site,

which uses a bold red header to create a stark and prominent tone to the

Author: Dr.P.Thiyagarajan, Dept. of Computer Science, Central University of

Tamil Nadu, Thiruvarur – 610 005.

110

design. But what does that say about ESPN? What does it tell the user

about the experience?

For the purposes of reference, Table 3-2 provides some of the

characteristics of various colors that naturally evoke certain emotions in

people.

Table 3-2 Color characteristic

Note what some of the different colors can mean in different

cultures. In some cases, the color you use can have opposing meanings in

different cultures. This is something to consider when thinking of

deploying your mobile experience to countries with the highest number of

mobile devices, such as China or India.

Color palettes

Author: Dr.P.Thiyagarajan, Dept. of Computer Science, Central University of

Tamil Nadu, Thiruvarur – 610 005.

111

Defining color palettes can be useful for maintaining a consistent

use of color in your mobile design. Color palettes typically consist of a

predefined number of colors to use throughout the design. Selecting what

colors to use varies from designer to designer, each having different

techniques and strategies for deciding on the colors. I’ve found that I use

three basic ways to define a color palette:

Sequential

In this case, there are primary, secondary, and tertiary colors. Often

the primary color is reserved as the “brand” color or the color that most

closely resembles the brand’s meaning. The secondary and tertiary colors

are often complementary colors that I select using a color wheel.

Adaptive

An adaptive palette is one in which you leverage the most common

colors present in a supporting graphic or image. When creating a design

that is meant to look native on the device, I use an adaptive palette to make

sure that my colors are consistent with the target mobile platform.

Inspired

This is a design that is created from the great pieces of design you

might see online, as shown in Figure 3-22, or offline, in which a picture of

the design might inspire you. This could be anything from an old poster in

an alley, a business card, or some packaging. When I sit down with a new

design, I thumb through some of materials to create an inspired palette.

Like with the adaptive palette, you actually extract the colors from the

source image, though you should never ever use the source material in a

design.

Figure 3-22 Adobe Kuler, a site that enables designers to share and use

different color palattes

Author: Dr.P.Thiyagarajan, Dept. of Computer Science, Central University of

Tamil Nadu, Thiruvarur – 610 005.

112

Figure 3-23 What most mobile designers think of when it comes to mobile

Typography

The sixth element of mobile design is typography, which in the

past would bring to mind the famous statement by Henry Ford:

Any customer can have a car painted any color that he wants so long as it

is black. Traditionally in mobile design, you had only one typeface that

you could use (Figure 3-23), and that was the device font. The only control

over the presentation was the size.

Figure 3-24 Microsoft Clear Type using subpixels to display sharp text

As devices improved, so did their fonts. Higher-resolution screens

allowed for a more robust catalog of fonts than just the device font. First,

let’s understand how mobile screens work.

Subpixels and pixel density

There seem to be two basic approaches to how type is rendered on

mobile screens: using subpixel-based screens or having a greater pixel

density or pixels per inch (PPI). A subpixel is the division of each pixel

Author: Dr.P.Thiyagarajan, Dept. of Computer Science, Central University of

Tamil Nadu, Thiruvarur – 610 005.

113

into a red, green, and blue (or RGB) unit at a microscopic level, enabling a

greater level of antialiasing for each font character or glyph. The addition

of these RGB subpixels enables the eye to see greater variations of gray,

creating sharper antialiasing and crisp text.

In Figure 3-25, you can see three examples of text rendering. The

first line shows a simple black and white example, the second shows text

with grayscale antialiasing, and the third line shows how text on a subpixel

display would render.

Figure 3-25 Different ways text can render on mobile screens

The Microsoft Windows Mobile platform uses the subpixel

technique with its Clear- Type technology, as shown in Figure 3-26

The second approach is to use a great pixel density, or pixels per

inch. We often refer to screens by either their actual physical dimensions

(“I have a 15.4-inch laptop screen”) or their pixel dimensions, or

resolution (“The resolution of my laptop is 1440×900 pixels”). The pixel

density is determined by dividing the width of the display area in pixels by

the width of the display area in inches. So the pixel density for my 15.4-

inch laptop would be 110 PPI. In comparison, a 1080p HD television has a

PPI of 52.

As this applies to mobile devices, the higher the density of pixels,

the sharper the screen appears to the naked eye. This guideline especially

applies to type, meaning that as text is antialiased on a screen with a high

density of tiny pixels, the glyph appears sharper to the eye. Some mobile

screens have both a high PPI and subpixel technology, though these are

unnecessary together. Table 3-3 provides the dimensions and PPI for a few

mobile devices.

Author: Dr.P.Thiyagarajan, Dept. of Computer Science, Central University of

Tamil Nadu, Thiruvarur – 610 005.

114

Table 3-3 Dimensions and PPI for some mobile devices

Type options

Fortunately, today’s mobile devices have a few more options than

a single typeface, but the options are still fairly limited. Coming from web

design, where we have a dozen or so type options, the limited choices

available in mobile design won’t come as a big surprise. Essentially, you

have a few variations of serif, sans-serif, and monospace fonts, and

depending on the platform, maybe a few custom fonts (Figure 3-26).

Figure 3-26 Options in typography increase as the devices become more

sophisticated

Therefore, when creating mobile designs for either web or native

experiences, my advice is to stick with either the default device font, or

Author: Dr.P.Thiyagarajan, Dept. of Computer Science, Central University of

Tamil Nadu, Thiruvarur – 610 005.

115

web-safe fonts—your basic serif variants like Times New Roman and

Georgia or sans-serif typefaces like Helvetica, Arial, or Verdana.

Font replacement

The ability to use typefaces that are not already loaded on the

device varies from model to model and your chosen platform. Some

device APIs will allow you to load a typeface into your native application.

Some mobile web browsers support various forms of font replacement; the

two most common are sIFR and Cufon. sIFR uses Flash to replace HTML

text with a Flash representation of the text, but the device of course has to

support Flash. Cufon uses JavaScript and the canvas element draws the

glyphs in the browser, but the device of course needs to support both

JavaScript and the canvas element.

In addition, the @font-face CSS rule allows for a typeface file to

be referenced and loaded into the browser, but a license for web use is

usually not granted by type foundries.

Readability

The most important role of typography in mobile design is to

provide the user with excellent readability, or the ability to clearly follow

lines of text with the eye and not lose one’s place or become disoriented,

as shown in Figure 3-27. This can be done by following these six simple

rules:

Use a high-contrast typeface

Remember that mobile devices are usually used outside. Having a

high-contrast typeface with regard to the background will increase

visibility and readability.

Use the right typeface

The type of typeface you use tells the user what to expect. For

example, a sans-serif font is common in navigation or compact areas,

whereas serif typefaces come in handy for lengthy or dense content areas.

Provide decent leading (rhymes with “heading”) or line spacing

Mobile screens are often held 10–12" away from the eye, which

can make tracking each line difficult. Increase the leading to avoid having

the users lose their place.

Leave space on the right and left of each line; don’t crowd the screen

Author: Dr.P.Thiyagarajan, Dept. of Computer Science, Central University of

Tamil Nadu, Thiruvarur – 610 005.

116

Most mobile frameworks give you full access to the screen,

meaning that you normally need to provide some spacing between the

right and left side of the screen’s edge and your text—not much, typically

about three to four character widths.

Generously utilize headings

Break the content up in the screen, using text-based headings to

indicate to the user what is to come. Using different typefaces, color, and

emphasis in headings can also help create a readable page.

Use short paragraphs

Like on the Web, keep paragraphs short, using no more than two to

three sentences per paragraph.

Figure 3-27 Classics, an iPhone application designed with readability and

typography in mind

Graphics

The final design element is graphics, or the images that are used to

establish or aid a visual experience. Graphics can be used to supplement

the look and feel, or as content displayed inline with the text.

For example, in Figure 3-28, you can see Ribot’s Little Spender

application for the iPhone and the S60 platform. The use of graphical

icons in the iPhone experience helps to establish a visual language for the

user to interact with to quickly categorize entries. On the S60 application,

the wallet photo in the upper-right corner helps communicate the message

of the application to the user.

Author: Dr.P.Thiyagarajan, Dept. of Computer Science, Central University of

Tamil Nadu, Thiruvarur – 610 005.

117

Iconography

The most common form of graphics used in mobile design is icons.

Iconography is useful to communicate ideas and actions to users in a

constrained visual space. The challenge is making sure that the meaning of

the icon is clear to the user. For example, looking at Figure 3-29, you can

see some helpful icons that clearly communicate an idea and some

perplexing icons that leave you scratching your head.

Figure 3-28 Ribot’s Little Spender application uses graphics to define the

experience

Author: Dr.P.Thiyagarajan, Dept. of Computer Science, Central University of

Tamil Nadu, Thiruvarur – 610 005.

118

Figure 3-29 Glyphish provides free iPhone icons

Photos and images

Photos and images are used to add meaning to content, often by

showing a visual display of a concept, or to add meaning to a design.

Using photos and images isn’t as common in mobile design as you might

think. Because images have a defined height and width, they need to be

scaled to the appropriate device size, either by the server, using a content

adaptation model, or using the resizing properties of the device. In the

latter approach, this can have a cost in performance. Loading larger

images takes longer and therefore costs the user more.

Using graphics to add meaning to a design can be a useful visual,

but you can encounter issues regarding how that image will display in a

flexible UI—for example, when the device orientation is changed. In

Figure 3-30, you can see how the pig graphic is designed to be positioned

to the right regardless of the device orientation.

Author: Dr.P.Thiyagarajan, Dept. of Computer Science, Central University of

Tamil Nadu, Thiruvarur – 610 005.

119

Figure 3-30 Using graphics in multiple device orientations

3.6 Mobile Design Tools

The closest thing to a common design tool is Adobe Photoshop,

though each framework has a different method of implementing the design

into the application. Some frameworks provide a complete interface

toolkit, allowing designers or developers to simply piece together the

interface, while others leave it to the designer to define from scratch.

In Table 3-4, you can see each of the design tools and what interface

toolkits are available for it.

Table 3-4 Design tools and interface toolkits

Author: Dr.P.Thiyagarajan, Dept. of Computer Science, Central University of

Tamil Nadu, Thiruvarur – 610 005.

120

3.3.1 Designing for the Right Device

With the best possible experience at hand, take a moment to relish

it. Remind yourself that you are working with a rapidly evolving medium

and though it might not be possible for every user to experience things

exactly the way you’ve intended, you’ve set the tone and the vision for

how the application should look. The truly skilled designer doesn’t create

just one product—she translates ideas into experiences. The spirit of your

design should be able to be adapted to multiple devices.

Now is the time to ask, “What device suits this design best? What

market niche would appreciate it most? What devices are the most popular

within that niche?” The days of tent-poles are gone. Focus instead on

getting your best possible experience to the market that will appreciate it

most. It might not be the largest or best long-term market, but what you

will learn from the best possible scenario will tell you volumes about your

mobile product’s potential for success or failure. You will learn which

devices you need to design for, what users really want, and how well your

design works in the mobile context.

This knowledge will help you develop your porting and/or

adaptation strategy, the most expensive and riskiest part of the mobile

equation.

For example, if you know that 30 percent of your users have

iPhones, then that is a market you can exploit to your advantage. iPhone

users consume more mobile content and products than the average mobile

user. This platform has an easy-to-learn framework and excellent

documentation, for both web and native products, and an excellent display

and performance means. Although iPhone users might not be the majority

of your market, the ability to create the best possible design and get it in

front of those users presents the least expensive product to produce with

the lowest risk.

With a successful single device launch, you can start to adapt

designs from the best possible experience to the second best possible

experience, then the third, and fourth, and so on. The best possible

experience is how it should be, so it serves as a reference point for how we

will adapt the experience to suit more devices.

Author: Dr.P.Thiyagarajan, Dept. of Computer Science, Central University of

Tamil Nadu, Thiruvarur – 610 005.

121

3.6.2 Designing for Different Screen Sizes

Mobile devices come in all shapes and sizes. Choice is great for

consumers, but bad for design. It can be incredibly difficult to create that

best possible experience for a plethora of different screen sizes. For

example, your typical feature phone might only be 140 pixels wide,

whereas your higher-end smartphone might be three to four times wider.

Landscape or portrait? Fixed width or fluid? Do you use one

column or two? These are common questions that come up when thinking

about your design on multiple screen sizes. The bad news is that there is

no simple answer. How you design each screen of content depends on the

scope of devices you look to support, your content, and what type of

experience you are looking to provide. The good news is that the vast

majority of mobile device screens share the same vertical or portrait

orientation, even though they vary greatly in dimension, as shown in

Figure 3-31.

Figure 3-31 Comparing the various screen sizes

Of course, there are some devices by default in a horizontal

orientation, and many smartphones that can switch between the two

orientations, but most people use their mobile devices in portrait mode.

Author: Dr.P.Thiyagarajan, Dept. of Computer Science, Central University of

Tamil Nadu, Thiruvarur – 610 005.

122

This is a big shift in thinking if you are coming from interactive design, as

up to this point, screens have been getting wider, not taller.

For years now, we’ve become used to placing less-crucial

information along the sides of web pages. In software, tasks flow from left

to right. With vertical designs, the goal is to think of your design as a

cascade of content from top to bottom (Figure 3-32), similar to a

newspaper. The most contextual information lives at the top, and the

content consumes the majority of the screen. Any exit points live at the

bottom. Mobile is no different.

Figure 3-32The typical flow of information on mobile devices

The greatest challenge to creating a design that works well on

multiple screen sizes is filling the width. For content-heavy sites and

applications, the width of mobile devices is almost the perfect readability,

presenting not too many words per line of text. The problem is when you

have to present a number of tasks or actions. The easiest and most

compatible way is to present a stacked list of links or buttons, basically

one action per line. It isn’t the most effective use of space, but presenting

too many actions on the horizontal axis quickly clutters the design—not to

mention that it is more difficult to adapt to other devices.

Unfortunately, it isn’t always reasonable to implement fluid or

flexible designs that stretch to fit the width of the screen. Although most

mobile web browsers and device framework APIs enable it in principle, its

execution across multiple devices is a little anticlimatic. Mobile websites

usually employ a fixed-width layout for the lowest common denominator,

Author: Dr.P.Thiyagarajan, Dept. of Computer Science, Central University of

Tamil Nadu, Thiruvarur – 610 005.

123

and native applications are often resized for multiple screen sizes during

development.

As devices get larger, denser screens, you will see an increase in

the use of touch, forcing the size of content to increase to fingertip size—

typically 40 pixels wide and 40 pixels tall (Figure 3-33). This actually

solves part of the horizontal axis problem, simply by making content

larger for larger screens. Ironically, you can fit almost the same amount of

usable content in an iPhone as you can a lower-end device.

Figure 3-33 The iPhone calculator application uses common finger-tip

size cotrols

Obviously, you can fit a lot more on screen with more advanced devices,

but you want to avoid forcing the user to zoom in and out of your

interfaces.

Author: Dr.P.Thiyagarajan, Dept. of Computer Science, Central University of

Tamil Nadu, Thiruvarur – 610 005.

124

3.7 Check your Progress Questions

1. The most important MobileApp architecture decision whether to build a

thin or fat mobile client

a) True

b). False

2. The ______ represent the relationship of content to other content and

provide a map for how the user will travel through the informational

space.

3. The ______ elements of mobile design that you need to consider,

starting with the context and layering in visual elements or laying out

content to achieve the design goal.

a) 5 b) 6

c) 7. d) 9

3.8 Answers to check your progress questions.

1. a) True

2. Sitemaps

3. b) 6

3.9. Summary

The way you organize your mobile app’s content is one of the main

factors of its future success. If you overlook this development stage, you

risk creating an app that can’t provide the user experience that makes

people return to the app again and again. So, choose the mobile IA

patterns wisely according to your particular needs and don’t be afraid to

combine them. In addition, bear in mind that you need to keep your IA as

simple and clear as possible, and make sure you test it and use your

customer feedback properly.

3.10 Key words

Information Architecture, Prototype, Mobile Design

Author: Dr.P.Thiyagarajan, Dept. of Computer Science, Central University of

Tamil Nadu, Thiruvarur – 610 005.

125

3.11 Self Assessment Questions and answers

Short Answer Questions

1. What is Information Architecture?

2. Define click streams.

3. Mention some ways of mobile prototype.

4. Write a note on color palatte.

Long Answer Questions

1. Explain about Mobile Information Architecture.

2. List and explain elements of mobile design.

3. Discuss on mobile design tools.

3.12 Further Readings

a. Brian Fling, Mobile Design and Development, OReilly media, 2009.

b.https://mobisoftinfotech.com/resources/blog/mobile-information-

architecture

Author: Dr.P.Thiyagarajan, Dept. of Computer Science, Central University of

Tamil Nadu, Thiruvarur – 610 005.

126

4. J2ME

4.1 Contents of the unit
4.1 Contents of the unit

4.2 Introduction

4.3 Objectives

4.4 J2ME architecture and development environment

4.4.1 Small computing device requirements

4.4.2 Run-time environment

4.4.3 MIDlet programming

4.5 J2ME Software Development Kits

4.6 J2ME wireless toolkit

4.7 Check your Progress Questions

4.8 Answers to check your progress questions.

4.9. Summary

4.10. Key words

4.11 Self Assessment Questions and answers

4.12 Further Readings

4.2 Introduction

The development team at Sun worked on Java in the early 1990s to

address the programming needs of the fledgling embedded computer

market, but that effort was sidetracked by more compelling opportunities

presented by the Internet.

As those opportunities were addressed, a new breed of portable

communications devices opened other opportunities at the turn of the

century. Cell phones expanded from voice communications devices to

voice and text communications devices. Pocket electronic telephone

directories evolved into personal digital assistants. Chipmakers were

releasing new products at this time that were designed to transfer

computing power from a desktop computer into mobile small computers

that controlled gas pumps, cable television boxes, and an assortment of

other appliances.

The time was right for the next evolution of Java. However, instead

of beefing up Java with additional APIs, the team at Sun, along with the

Java Community Process Program, dismantled both the Java programming

language and the Java Virtual Machine. They stripped down Java APIs

and the JVM to the minimum coding required providing intelligence to

Author: Dr.P.Thiyagarajan, Dept. of Computer Science, Central University of

Tamil Nadu, Thiruvarur – 610 005.

127

embedded systems and microcomputer devices. This was necessary

because of resource constraints imposed upon the hardware design of these

devices. The result of their efforts is J2ME.

4.3 Objectives

 To understand the overview of J2ME.

 To learn about J2ME architecture

 To learn elements needed for mobile java applications (MIDlet)

development.

4.4 J2ME architecture and development environment

 J2ME is a reduced version of the Java API and Java Virtual

Machine that is designed to operate within the sparse resources available

in the new breed of embedded computers and microcomputers.

J2ME made its debut at the JavaOne Developers Conference in

mid-1999 and is targeted to developers of intelligent wireless devices and

small computing devices who need to incorporate cross-platform

functionality in their products.

Consumers of mobile and small computing devices have high

performance expectations for these devices. They demand quick response

time, compatibility with companion services, and full-featured

applications in a small computing device. Consumers expect the same

software and capabilities found on their desktop and laptop computers to

be available on their cell phones and personal digital assistants.

To meet these expectations, developers have to rethink the way

they build computer systems. Developers need to harness the power of

existing front-end and back-end software found on business computers and

transfer this power onto small, mobile, and wireless computing devices.

J2ME enables this transformation to occur with minimal modifications,

assuming that applications are scalable in design so that an application can

be custom-fitted to resources available on a small computing device.

Developers seeking to build applications that run on cell phones,

personal digital assistants, and various consumer and industrial appliances

must strike a balance between a thick client and a thin client. A thick client

is front-end software that contains the logic to handle a sizable amount of

data processing for the system (Figure 4-1). A thin client is front-end

Author: Dr.P.Thiyagarajan, Dept. of Computer Science, Central University of

Tamil Nadu, Thiruvarur – 610 005.

128

software that depends on back-end software for much of the system

processing (Figure 4-2).

Figure 4-1. Thick client applications handle most processing locally

Figure 4-2. Thin client applications rely on server-side software for

nearly all processing

Let’s say that a wireless small computing device is used to transact

orders on the floor of a stock exchange. The wireless device has software

to handle user interactions such as displaying an electronic form on the

screen, collecting user input, processing the input, and displaying results

of the processing on the screen.

Author: Dr.P.Thiyagarajan, Dept. of Computer Science, Central University of

Tamil Nadu, Thiruvarur – 610 005.

129

The order form is displayed on the screen, and the user enters

information into the order form using various input conventions

commonly found in small wireless devices. The device collects the order

information and then processes the order using a combination of software

on the wireless device and software running on a back-end system that

receives the order through a wireless connection.

Processing on the wireless device might involve two steps: First

the software performs a simple validation process to assure that all fields

on the form contain information. Next the order is transmitted to the back-

end system. The back-end system handles adjusting account balances and

other steps involved in processing the order. A confirmation notice is

returned by the back-end system to the wireless device, which displays the

confirmation notice on the screen (Figure 4-3).

A key benefit of using J2ME is that J2ME is compatible with all

Java-enabled devices. A Java-enabled device is any computer that runs the

Java Virtual Machine.

Figure 4-3 A J2ME application is a balance between local and server-side

processing.

Ericson, Motorola, Nextel, Nokia, Panasonic, and RIM all have

Java-enabled devices. In addition, J2ME maintains the powerful security

features found in the Java language and enables wireless and small

computing devices to access resources that are within an organization’s

firewall.

Author: Dr.P.Thiyagarajan, Dept. of Computer Science, Central University of

Tamil Nadu, Thiruvarur – 610 005.

130

How J2ME Is Organized

Traditional computing devices use fairly standard hardware

configurations such as a display, keyboard, mouse, and large amounts of

memory and permanent storage.

However, the new breed of computing devices lacks hardware

configuration continuity among devices. Some devices don’t have a

display, permanent storage, keyboard, or mouse. And memory availability

is inconsistent among small computing devices.

The lack of uniform hardware configuration among the small

computing devices poses a formidable challenge for the Java Community

Process Program, which is charged with developing standards for the JVM

and the J2ME for small computing devices.

J2ME must service many different kinds of small computing

devices, including screenphones, digital set-top boxes used for cable

television, cell phones, and personal digital assistants. The challenge for

the Java Community Process Program is to develop a Java standard that

can be implemented on small computing devices that have nonstandard

hardware configurations.

The Java Community Process Program has used a twofold

approach to addressing the needs of small computing devices. First, they

defined the Java run-time environment and core classes that operate on

each device. This is referred to as the configuration. A configuration

defines the Java Virtual Machine for a particular small computing device.

There are two configurations, one for handheld devices and the

other for plug-in devices. Next, the Java Community Process Program

defined a profile for categories of small computing devices. A profile

consists of classes that enable developers to implement features found on a

related group of small computing devices.

J2ME is targeted to developers of intelligent wireless devices and

small computing devices who need to incorporate cross-platform

functionality in their products. A key benefit of using J2ME is

compatibility with all Java-enabled devices. Motorola, Nokia, Panasonic

all have Java-enabled devices.A J2ME application is a balance between

local and server-side processing. The Java Community Process Program

used two approaches to addressing the needs of small computing devices.

Author: Dr.P.Thiyagarajan, Dept. of Computer Science, Central University of

Tamil Nadu, Thiruvarur – 610 005.

131

 Configurations:It is the Java run-time environment and core classes

that operate on each device. A configuration defines the Java

Virtual Machine for a particular small computing device. There are

two configurations.

o CLDC for handheld devices:The CLDC (Connected

Limited Device Configuration) is designed for 16-bit or 32-

bit small computing devices with limited memory. These

devices usually have between 160KB and 512KB of

available memory. Usually these are powered by battery.

They use small-bandwidth network wireless connection.

These devices uses a stripped-down version of the JVM the

KJava Virtual Machine (KVM). These devices include

pagers, personal digital assistants, cell phones, dedicated

terminals, and handheld consumer device.

o CDC for plug-in devices:CDC(Connected Device

Configuration) devices use a 32-bit architecture, have at

least 2 MB of memory available, and implement a complete

functional JVM. CDC devices include digital set-top boxes,

home appliances, navigation systems, point-of-sale

terminals, and smart phones.

 Profiles:It is defined for categories of small computing devices. A

profile consists of classes that enable developers to implement

features found on a related group of small computing devices. List

of J2ME Profiles:

o Profiles Used with CLDC:

 Mobile Information Device Profile(MIDP)

 PDA Profile(PDAP)

o Profiles Used with CDC:

 Foundation Profile

 Game Profile

 Personal Profile

 Personal Basis Profile

 RMI Profile.

■ The Foundation Profile is used with the CDC configuration and is the

core for nearly all other profiles used with the CDC configuration because

the Foundation Profile contains core Java classes.

■ The Game Profile is also used with the CDC configuration and contains

the necessary classes for developing game applications for any small

computing device that uses the CDC configuration.

Author: Dr.P.Thiyagarajan, Dept. of Computer Science, Central University of

Tamil Nadu, Thiruvarur – 610 005.

132

■ The Mobile Information Device Profile (MIDP) is used with the CLDC

configuration and contains classes that provide local storage, a user

interface, and networking capabilities to an application that runs on a

mobile computing device such as Palm OS devices. MIDP is used with

wireless Java applications.

■ The PDAProfile (PDAP) is used with the CLDC configuration and

contains classes that utilize sophisticated resources found on personal

digital assistants. These features include better displays and larger memory

than similar resources found on MIDP mobile devices (such as cell

phones).

■ The Personal Profile is used with the CDC configuration and the

Foundation Profile and contains classes to implement a complex user

interface. The Foundation Profile provides core classes, and the Personal

Profiles provide classes to implement a sophisticated user interface, which

is a user interface that is capable of displaying multiple windows at a time.

■ The Personal Basis Profile is similar to the Personal Profile in that it is

used with the CDC configuration and the Foundation Profile. However,

the Personal Basis Profile provides classes to implement a simple user

interface, which is a user interface that is capable of displaying one

window at a time.

■ The RMI Profile is used with the CDC configuration and the Foundation

Profile to provide Remote Method Invocation classes to the core classes

contained in the Foundation Profile.

There will likely be many profiles as the proliferation of small

computing devices continues. Industry groups within the Java Community

Process Program (java.sun.com/aboutjava/communityprocess) define

profiles. Each group establishes the standard profile used by small

computing devices manufactured by that industry.

ACDC profile is defined by expanding upon core Java classes

found in the Foundation Profile with classes specifically targeted to a class

of small computing device. These device-specific classes are contained in

a new profile that enables developers to create industrial-strength

applications for those devices. However, if the Foundation Profile is

specific to CDC, not all profiles are expanded upon the core classes found

in the Foundation Profile.

Author: Dr.P.Thiyagarajan, Dept. of Computer Science, Central University of

Tamil Nadu, Thiruvarur – 610 005.

133

The modular design of the J2ME architecture enables an

application to be scaled based on constraints of a small computing device.

J2ME architecture doesn’t replace the operating system of a small

computing device. Instead, J2ME architecture consists of layers located

above the native operating system, collectively referred to as the

Connected Limited Device Configuration (CLDC). The CLDC, which is

installed on top of the operating system, forms the run-time environment

for small computing devices.

The J2ME architecture comprises three software layers (Figure 4-

4). The first layer is the configuration layer that includes the Java Virtual

Machine (JVM), which directly interacts with the native operating system.

The configuration layer also handles interactions between the profile and

the JVM. The second layer is the profile layer, which consists of the

minimum set of application programming interfaces (APIs) for the small

computing device. The third layer is the Mobile Information Device

Profile (MIDP).

The MIDP layer contains Java APIs for user network connections,

persistence storage, and the user interface. It also has access to CLDC

libraries and MIDP libraries.

Figure 4-4. Layers of the J2ME architecture

A small computing device has two components supplied by the

original equipment manufacturer (OEM). These are classes and

applications. OEM classes are used by the MIDP to access device-specific

features such as sending and receiving messages and accessing device-

specific persistent data. OEM applications are programs provided by the

OEM, such as an address book. OEM applications can be accessed by the

MIDP.

Author: Dr.P.Thiyagarajan, Dept. of Computer Science, Central University of

Tamil Nadu, Thiruvarur – 610 005.

134

4.4.1 Small Computing Device Requirements

There are minimum resource requirements for a small computing

device to run a J2ME application. First the device must have a minimum

of 96 × 54 pixel display that can handle bitmapped graphics and have a

way for users to input information, such as a keypad, keyboard, or touch

screen. At least 128 kilobytes (KB) of nonvolatile memory is necessary to

run Mobile Information Device (MID), and 8KB of nonvolatile memory is

needed for storage of persistent application data. To run JVM, 32KB of

volatile memory must be available. The device must also provide two-way

network connectivity.

Besides minimal hardware requirements, there are also minimal

requirements for the native operating system. The native operating system

must implement exception handling, process interrupts, be able to run the

JVM, and provide schedule capabilities.

Furthermore, all user input to the operating system must be

forwarded to the JVM, otherwise the device cannot run a J2ME

application. Although the native operating system doesn’t need to

implement a file system to run a J2ME application, it must be able to write

and read persistent data (data retained when the device is powered down)

to nonvolatile memory.

4.4.2 Run-Time Environment

A MIDlet is a J2ME application designed to operate on an MIDP

small computing device. A MIDlet is defined with at least a single class

that is derived from the javax .microedition.midlet. MIDlet abstract class.

Developers commonly bundle related MIDlets into a MIDlet suite, which

is contained within the same package and implemented simultaneously on

a small computing device. All MIDlets within a MIDlet suite are

considered a group and must be installed and uninstalled as a group

(Figure 4-5).

Members of a MIDlet suite share resources of the host environment

and share the same instances of Java classes and run within the same JVM.

This means if three MIDlets from the same MIDlet suite run the same

class, only one instance of the class is created at a time in the Java Virtual

Machine. A key benefit of the relationship among MIDlet suite members

is that they share the same data, including data in persistent storage such as

user preferences.

Author: Dr.P.Thiyagarajan, Dept. of Computer Science, Central University of

Tamil Nadu, Thiruvarur – 610 005.

135

Figure 4-5. MIDlets are packaged into MIDlet suites, which are loaded in

a small computing device.

 This risk is reduced by synchronization primitives on the MIDlet

suite level that restrict access to volatile data and persistent data. However,

if a MIDlet uses multi-threading, the MIDlet is responsible for coordinated

access to the record store.

Data cannot be shared between MIDlets that are not from the same

MIDlet suite because the MIDlet suite name is used to identify data

associated with the suite.

A MIDlet from a different MIDlet suite is considered an unreliable

source. A MIDlet suite is installed, executed, and removed by the

application manager running on the device. The manufacturer of the small

computing device provides the application manager. Once a MIDlet suite

is installed, each member of the MIDlet suite is given access to classes of

the JVM and CLDC by the application manager. Likewise, a MIDlet can

access classes defined in the MIDP to interact with the user interface,

network, and persistent storage.

The application manager also makes the Java archive (JAR) file

and the Java application descriptor (JAD) file available to members of the

MIDlet suite.

Inside the Java Archive File

All the files necessary to implement a MIDlet suite must be

contained within a production package called a Java archive (JAR) file.

These files include MIDlet classes, graphic images (if required by a

MIDlet), and the manifest file. The manifest file contains a list of

attributes and related definitions that are used by the application manager

to install the files contained in the JAR file onto the small computing

device.

Author: Dr.P.Thiyagarajan, Dept. of Computer Science, Central University of

Tamil Nadu, Thiruvarur – 610 005.

136

Nine attributes are defined in the manifest file; all but six of these

attributes are optional. Table 4-1 lists attributes contained in a manifest

file. Of these, the first six attributes are required for every manifest file.

Failure to include them in the manifest file causes the application manager

to halt the installation of the JAR file.

Listing 4-1 is a manifest file that contains the minimum number of

attributes.

Table 4-1 Attributes of the manifest file

Listing 4-1 Entries in manifest file

Entries in the manifest are name:value pairs and therefore can

appear in any order within the manifest file. Each pair must be terminated

with a carriage return. Whitespace between the colon and the attribute

value is ignored when the application manager reads the manifest file.

Let’s step through the manifest file shown in Listing 4-1. The

MIDlet-Name attribute specifies the name of the MIDlet suite, which is

Best MIDlet in this example. The MIDlet-Version and MIDlet-Vendor

attributes identify the version number of the MIDlet suite and the company

or person who provided the MIDlet suite.

Author: Dr.P.Thiyagarajan, Dept. of Computer Science, Central University of

Tamil Nadu, Thiruvarur – 610 005.

137

The MIDlet-n attribute contains information about each MIDlet

that is in the JAR file. The number of the MIDlet replaces the letter n. In

this example, the n is replaced with the digit 1 because there is only one

MIDlet in the MIDlet suite.

The MIDlet-n attribute can contain three values that describe the

MIDlet. A comma separates each value. The first value is the name of the

MIDlet, which is BestMIDlet. Next is an optional value that specifies the

icon that will be used with the MIDlet. In this example, BestMIDlet.png is

the icon. The icon must be in the PNG image format.

And the last value for the MIDlet-n attribute is the MIDlet class

name, which is Best.BestMIDlet. The application manager uses the class

name to load the MIDlet.

The next MIDlet-n attribute is the MicroEdition-Profile whose

value is the J2ME profile that is required to run the MIDlet. In this

example the MIDP-1.0 profile is required. And the last MIDlet-n attribute

is the MicroEdition-Configuration. The MicroEdition-Configuration

attribute identifies the J2ME configuration that is necessary to run the

MIDlet.

Inside the Java Application Descriptor File

You may include a Java application descriptor (JAD) file within

the JAR file of a MIDlet suite as a way to pass parameters to a MIDlet

without modifying the JAR file . A JAD file is also used to provide the

application manager with additional content information about the JAR

file to determine whether the MIDlet suite can be implemented on the

device.

A JAD file is similar to a manifest in that both contain attributes

that are name:value pairs. Name:value pairs can appear in any order within

the JAD file. There are five required system attributes for a JAD file:

MIDlet-Name

MIDlet-Version

MIDlet-Vendor

MIDlet-n

MIDlet-Jar-URL

A system attribute is an attribute that is defined in the J2ME

specification. Table 4-2 contains a complete list of system attributes.

Author: Dr.P.Thiyagarajan, Dept. of Computer Science, Central University of

Tamil Nadu, Thiruvarur – 610 005.

138

Listing 3-2 illustrates a typical JAD file. All JAD files must have the .jad

extension.

The JAD file shown in Listing 4-2 contains a few attributes that are

also found in the manifest file in Listing 4-1. The first three attributes in

the JAD file are identical to attributes in the manifest file.

Listing 4-2 A JAD file

The MIDlet-Jar-URL attribute contains the URL of the JAR file,

which in this example is called bestmidlet.jar. And the last required

attribute in the JAD file is the MIDlet-n attribute that defines a MIDlet of

the MIDlet suite identical to the MIDlet-n attribute of the manifest.

AMIDlet-n attribute is required for each MIDlet in the MIDlet suite.

A word of caution: the values of the MIDlet-Name, MIDlet-

Version, and MIDlet- Vendor attributes in the JAD file must match the

same attributes in the manifest. If the values are different, the JAR file is

not installed. Other attributes that are not the same are overridden by

attributes in the descriptor.

Table 4-2. Attributes for a JAD file

A developer can include application attributes in a JAD file. An

application attribute is a name:value pair that contains a value unique to

Author: Dr.P.Thiyagarajan, Dept. of Computer Science, Central University of

Tamil Nadu, Thiruvarur – 610 005.

139

the application. Any name can be given to an application attribute as long

as it does not begin with MIDlet-.

4.4.3 MIDlet Programming

Programming a MIDlet is similar to creating a J2SE application in

that you define a class and related methods. However, a MIDlet is less

robust than a J2SE application because of the restrictions imposed by the

small computing device. The following overview gives you a glimpse of

how a MIDlet is created.

A MIDlet is a class that extends the MIDlet class and is the

interface between application statements and the run-time environment,

which is controlled by the application manager. A MIDlet class must

contain three abstract methods that are called by the application manager

to manage the life cycle of the MIDlet. These abstract methods are

startApp(), pauseApp(), and destroyApp().

The startApp() method is called by the application manager when

the MIDlet is started and contains statements that are executed each time

the application begins execution (Figure 4-6). The pauseApp() method is

called before the application manager temporarily stops the MIDlet. The

application manager restarts the MIDlet by recalling the startApp()

method. The destroyApp() method is called prior to the termination of the

MIDlet by the application manager.

Listing 4-3 illustrates the basic shell of a MIDlet. In this example,

the MIDlet class called Basic MIDlet Shell extends the MIDlet class. Any

name can be used for a class as long as it conforms to the Java class

naming convention.

Listing 4-3 The basic MIDlet shell

Author: Dr.P.Thiyagarajan, Dept. of Computer Science, Central University of

Tamil Nadu, Thiruvarur – 610 005.

140

Figure 4-6. The application manager calls methods of a MIDlet

Both the startApp() and pauseApp() methods are public and have

no return value nor parameter list. The destroyApp() method is also a

public method without a return value. However, the destroyApp() method

has a boolean parameter that is set to true if the termination of the MIDlet

is unconditional, and false if the MIDlet can throw a

MIDletStateChangeException telling the application manager that the

MIDlet does not want to be destroyed just yet.

At the center of every MIDlet are the MIDP API classes used by

the MIDlet to interact with the user and handle data management. User

interactions are managed by user interface MIDP API classes. These APIs

enable a developer to display screens of data and prompt the user to

respond with an appropriate command. The command causes the MIDlet

to execute one of three routines: perform a computation, make a network

request, or display another screen.

The data-handling MIDP API classes enable the developer to

perform four kinds of data routines: write and read persistent data, store

data in data types, receive data from and send data to a network, and

interact with the small computing device’s input/output features.

Event Handling

A MIDlet is an event-based application. All routines executed in

the MIDlet are invoked in response to an event reported to the MIDlet by

the application manager. The initial event that occurs is when the MIDlet

is started and the application manager invokes the startApp() method.

The startApp() method in a typical MIDlet contains a statement

that displays a screen of data and prompts the user to enter a selection

from among one or more options. The nature and number of options is

MIDlet and screen dependent.

A Command object is used to present a user with a selection of

options to choose from when a screen is displayed. Each screen must have

Author: Dr.P.Thiyagarajan, Dept. of Computer Science, Central University of

Tamil Nadu, Thiruvarur – 610 005.

141

a CommandListener. A CommandListener monitors user events with a

screen and causes the appropriate code to execute based on the current

event.

User Interfaces

The design of a user interface for a MIDlet depends on the

restrictions of a small computing device. Some small computing devices

contain resources that provide a rich user interface, while other more

resource-constrained devices offer a modest user interface. A rich user

interface contains the following elements, and a device with a minimal

user interface has some subset of these elements as determined by the

profile used for the device.

A Form is the most commonly invoked user interface element

found in a MIDlet and is used to contain other user interface elements.

Text is placed on a form as a StringItem, a List, a ChoiceGroup, and a

Ticker.

A StringItem contains text that appears on a form that cannot be

changed by the user. A List is an itemized options list from which the user

can choose an option. A ChoiceGroup is a related itemized options list.

And a Ticker is text that is scrollable. A user enters information into a

form by using the Choice element, TextBox, TextField, or DateField

elements. The Choice element returns an option that the user selected.

TextBox and TextField elements collect textual information from a user

and enable the user to edit information that appears in these user interface

elements. The DateField is similar to a TextBox and TextField except its

contents are a date and time.

An Alert is a special Form that is used to alert the user that an error

has occurred. An Alert is usually limited to a StringItem user interface

element that defines the nature of the error to the user.

Device Data

Small computing devices don’t have the resources necessary to run

an onboard database management system (DBMS). In fact some of these

devices lack a file system. Therefore, a MIDlet must read and write

persistent data without the advantage of a DBMS or file system.

A MIDlet can use an MIDP class—RecordStore—and two MIDP

interfaces— RecordComparator and RecordFilter—to write and read

persistent data. A RecordStore class contains methods used to write and

Author: Dr.P.Thiyagarajan, Dept. of Computer Science, Central University of

Tamil Nadu, Thiruvarur – 610 005.

142

read persistent data in the form of a record. Persistent data is read from a

RecordStore by using either the RecordComparator interface or the

RecordFilter interface.

CDC implements the full J2SE available, but CLDC implements a

stripped-down J2SE because of the limited resources in small computing

devices.

Floating-point math is probably the most notable missing feature of

J2ME. Floatingpoint math requires special processing hardware to perform

floating-point calculations. However, most small computing devices lack

such hardware and therefore are unable to process floating-point

calculations. This means that your MIDlet cannot use any floating-point

data types or calculations.

The second most notable difference between the Java language

used in J2SE and J2ME is the absence of support for the finalize() method.

The finalize() method in J2SE is automatically called before an instance of

a class terminates and typically contains statements that free previously

allocated resources. However, resources in a small computing device are

too scarce to process the finalize() method.

Another dramatic difference is the reduced number of error-

handling exceptions that are supported in J2ME. Table 4-3 lists error-

handling exceptions available in J2ME. Exception handling drains system

resources, which are precious in a small computing device and therefore

the primary reason for trimming the number of error-handling exceptions.

Typically, run-time errors are automatically responded to by the native

operating system by restarting the small computing device.

Changes were also made in the Java Virtual Machine that runs on a

small computing device because of resource constraints. One such change

occurs with the class loader. JVM for small computing devices requires a

custom class loader that is supplied by the device manufacturer and cannot

be replaced or modified. Another feature lacking in the JVM is the

ThreadGroup class. You cannot group threads. All threads are handled at

the object level, although there is a workaround(see Chapter 4). Also, you

cannot call other programming languages’ methods and APIs, primarily

because of the memory requirements to execute such calls. Two other

features of J2SE that are missing from J2ME are weak references and the

Reflection classes.

Author: Dr.P.Thiyagarajan, Dept. of Computer Science, Central University of

Tamil Nadu, Thiruvarur – 610 005.

143

The standard JVM uses class file verification to protect

applications from malicious code through the use of a security manager.

However, this process is replaced with a two-step process because of the

limited resources available on small computing devices.

The first step is called pre verification and occurs outside the small

computing device prior to loading the MIDlet. Preverification requires that

additional attributes called stack maps are inserted into a class file by

software before the second step runs. Stack maps describe the MIDlet’s

variables and operands located on the interpreter stack.

After pre verification is completed, the MIDlet class is loaded into

the device, and the verifier within the small computing device validates

each instruction in the MIDlet class. The MIDlet class is automatically

rejected if the verifier detects an error.

Author: Dr.P.Thiyagarajan, Dept. of Computer Science, Central University of

Tamil Nadu, Thiruvarur – 610 005.

144

Table 4-3 J2ME support classes

4.5 J2ME Software Development Kits

A MIDlet is built using free software packages that are

downloadable from the java.sun.com web site, although you can purchase

third-party development products such as Borland JBuilder Mobile Set,

Sun One Studio 4 (formerly Forte for Java), and WebGain VisualCafe

Enterprise Suite. Three software packages need to be downloaded from

java.sun.com. These are the Java Development Kit (1.3 or greater)

(java.sun.com/ j2se/downloads.html), Connected Limited Device

Configuration (CLDC) (java.sun. com/products/cldc/), and the Mobile

Information Device Profile (MIDP) (java.sun.com/ products/midp/).

Each of these software packages contains installation instructions

that you need to follow closely in order to assure proper installation of

each package. However, there are a few tips that will help you during the

installation. First, install the Java development kit. The Java development

kit contains the Java compiler and the jar.exe, which is used to create Java

archive files as described previously in this chapter. After downloading the

Java development kit package, unzip the package and run the installation

program. It is best to accept the default directory, although you are free to

choose a different directory for the Java development kit.

Once the Java development kit is installed, place the c:\jdk\bin

directory, or whatever directory you selected for the Java development kit,

on the PATH environment variable (see “Setting the Path inWindows”

Author: Dr.P.Thiyagarajan, Dept. of Computer Science, Central University of

Tamil Nadu, Thiruvarur – 610 005.

145

sidebar). This enables you to invoke the Java compiler from anywhere on

your computer.

Setting the Path in Windows

Windows 2000 and Windows NT

1. Choose System from the Control Panel.

2. Select Environment or Advanced/Environment.

3. Locate the PATH environment variable.

4. Enter the directory at the end of the path. Be sure to separate entries

with a semicolon.

Windows 98 and Windows 95

1. Select Start.

2. Select Run.

3. Enter sysedit.

4. Select OK.

5. Locate the autoexec.bat dialog box.

6. Add the directory to the PATH environment variable.

Install the CLDC once the Java development kit is installed. Unzip

the downloaded CLDC files from the java.sun.com web site onto the

d:\j2me directory (J2ME_HOME) on your computer. The j2me_cldc has a

bin subdirectory that contains the K Virtual Machine and the preverifier

executable files for an assortment of platforms such as win32. Each

platform is in its own subdirectory under j2me_cldc. Add the

j2me\j2me_cldc\bin\win32 subdirectory to the PATH environment

variable (see “Setting the Path in Windows” sidebar). You should

substitute win32 subdirectory with the appropriate subdirectory for your

platform.

Next, download and unzip the MIDP file. Be sure to use \j2me as

the directory for the MIDP file. Unzipping the MIDP file creates a midp

directory. The name of this directory might vary depending on the version

that you download. Some versions create a midp-fcs directory, while the

1.0.3 version creates a %J2ME_HOME%\midp1.0.3fcs directory. The

midp1.0.3fcs directory also contains a bin subdirectory. And you’ll need to

include the \j2me\midp1.0.3fcs\bin subdirectory in the PATH environment

variable.

Next, create two environment variables. These are CLASSPATH

and MIDP_HOME. The CLASSPATH environment variable identifies the

path to be searched whenever a class is invoked. The MIDP_HOME

Author: Dr.P.Thiyagarajan, Dept. of Computer Science, Central University of

Tamil Nadu, Thiruvarur – 610 005.

146

environment variable identifies the location of the \lib directory that

contains the internal.config file and the system.config file.

Set the CLASSPATH to

d:\j2me\midp1.0.3fcs\classes;.

Notice that the CLASSPATH terminates with a period. The period

implies the current directory and will cause the current directory to be

searched if a class is not found in the \j2me\midp1.0.3fcs\classes directory.

Modifying the internal.config FileThe internal.config file is used to

describe preferences that affect features of MIDP. Preferences are

identified by name:value pairs. You can change values of name:value pairs

by modifying the file with an editor. For example, MIDP contains an

emulator for J2ME devices, such as cellular telephones. An emulator

enables you to test the performance of your MIDlet without having to load

the MIDlet into the real device. You can modify the color configuration of

the emulated device by changing the value of the

system.display.screen_depth attribute to 1, 2, 4, or 8. The value 1 causes

the emulator to display black and white colors. The value 2 forces the

emulator to display a 4-color grayscale. The value 4 displays a 15-color

grayscale, and the value 8 changes the emulator to 256 possible colors.

Set the MIDP_HOME environment variable to

d:\j2me\midp1.0.3fcs

Hello World J2ME Style

You can create your first MIDlet once the Java development kit,

Connected Limited

Device Configuration (CLDC), and Mobile Information Device

Profile (MIDP) are installed. And keeping tradition alive, let’s begin by

creating a directory structure within which you can create and run

MIDlets. Here are the directories that are used for examples in this

chapter:

■ j2me

■ j2me\src

■ j2me\src\greeting

■ j2me\tmp_classes

■ j2me\midlets

Author: Dr.P.Thiyagarajan, Dept. of Computer Science, Central University of

Tamil Nadu, Thiruvarur – 610 005.

147

You’ll create two MIDlets in this section, which will illustrate the

basic concept of making and running a J2ME application. The first MIDlet

is called HelloWorld and the other MIDlet is GoodbyeWorld. The

HelloWorld MIDlet shows how to create a simple MIDlet that can be

invoked directly from the class and from a Java archive file.

Later in this section you’ll learn how to create a MIDlet suite

that contains two MIDlets. These are HelloWorld and GoodbyeWorld.

Let’s begin by creating the HelloWorld MIDlet. Enter the code

shown in Listing 4-4 into a text editor such as Notepad, and save the file in

the j2me\src\greeting directory as HelloWorld.java.

The HelloWorld MIDlet performs three basic functions that are

found in nearly all MIDlets. These are to display a text box and a

command on the screen, then listen to events that occur while the MIDlet

is running.

The HelloWorld MIDlet is created by defining a class called

HelloWorld that extends the MIDlet class and implements a

CommandListener. The HelloWorld class contains three private data

members and four methods. The data members are a Display object, a text

box, and a command. The methods are startApp(), pauseApp(), and

destroyApp(), which are discussed earlier in this chapter. The fourth

method is called commandAction() and is invoked by the application

manager whenever an event occurs.

Listing 4-4 illustrates a typical HelloWorld MIDlet. Two packages

must be imported at the beginning of the MIDlet to access MIDlet classes

and lcdui classes. MIDlet classes are screen oriented and create a Display

object and then place components of the screen into the Display object.

The Display object is then invoked later in the MIDlet to display the

screen on the small computing device.

package greeting;

import javax.microedition.midlet.*;

import javax.microedition.lcdui.*;

public class HelloWorld extends MIDlet implements CommandListener

{

private Display display ;

private TextBox textBox ;

private Command quitCommand;

public void startApp()

Author: Dr.P.Thiyagarajan, Dept. of Computer Science, Central University of

Tamil Nadu, Thiruvarur – 610 005.

148

{

display = Display.getDisplay(this);

quitCommand = new Command("Quit", Command.SCREEN, 1);

textBox = new TextBox("Hello World", "My first MIDlet", 40, 0);

textBox .addCommand(quitCommand);

textBox .setCommandListener(this);

display .setCurrent(textBox);

}

public void pauseApp()

{

}

public void destroyApp(boolean unconditional)

{

}

public void commandAction(Command choice, Displayable displayable)

{

if (choice == quitCommand)

{

destroyApp(false);

notifyDestroyed();

}

}

}

Listing 4-4 HelloWorld MIDlet source code

The Display object in this example is called display and will

contain a TextBox object called textBox and a Command object called

quitCommand. All three objects are private and are defined at the

beginning of the HelloWorld class definition.

The startApp() method contains the necessary statements to invoke

previously defined objects. The startApp() method begins by creating an

instance of the Display object by calling the getDisplay() method. The

instance of the Display object is assigned to the display Display object that

is previously defined in the class. Calling getDisplay multiple times

always returns the same Display reference for the specified MIDlet.

Next, an instance of a command object is created. There are three

values required when creating a command object. The first value is the

label of the command that will command, which is a screen command. The

third parameter determines the priority of the command, which is the first

priority—the higher the number, the lower the priority. The application

Author: Dr.P.Thiyagarajan, Dept. of Computer Science, Central University of

Tamil Nadu, Thiruvarur – 610 005.

149

manager uses priority to determine the order in which a command appears

in a menu if the MIDlet uses a menu.

The last instance of an object that is created in the startApp() is a

TextBox object. Four values are necessary to create an instance of a

TextBox object. The first is the caption for the TextBox object followed

by the text that will appear in the TextBox object. In this example,

HelloWorld is the caption and My first MIDlet is the text. The other two

values are coordinates used by the application manager to position the

TextBox object on the screen.

Next, the Command object must be associated with the TextBox

message. This is accomplished by calling the addCommand() method of

the TextBox object and passing the addCommand() method the Command

object. Once the Command object is associated with the TextBox object,

the CommandListener must be associated with the TextBox object in order

for the CommandListener to respond to events occurring when the

TextBox object is displayed on the screen. The setCommandListener()

method of the TextBox object is used to associate the TextBox object with

the CommandListener.

And the final statement within the startApp() method associates the

TextBox object with the Display object by calling the setCurrent() method

of the Display object and passing the setCurrent() method the TextBox

object.

When the application manager of the small computing device runs

the HelloWorld MIDlet, the startApp() method is the first method that is

invoked, which causes the display that contains the Hello World message

and the Quit command to be shown on the screen.

The HelloWorld MIDlet is required to define a pauseApp() method

and a destroyApp() method, but these methods can remain empty because

no special action is taken when the HelloWorld MIDLet is paused or

destroyed.

The commandAction() method contains statements that evaluate

events that occur while the HelloWorld MIDLet is running. The command

selected by the user is passed to the commandAction() method as the first

parameter. The second parameter is a Displayable object, which is a

reference to the TextBox that is associated with the command. A TextBox

along with other interface objects are Displayable objects.

Author: Dr.P.Thiyagarajan, Dept. of Computer Science, Central University of

Tamil Nadu, Thiruvarur – 610 005.

150

An if statement is used to determine whether the user selected the

Command object that is associated with the Hello World TextBox object.

If so, the destroyApp() method is invoked and is passed a boolean false.

The destroyApp() method is called before the MIDlet is destroyed;

afterwards the notifyDestroyed() method is called to notify the application

manager that the HelloWorld MIDLet has entered into the destroyed state.

Prior to invoking the notifyDestroyed() method, a MIDlet should have

completed its own garbage collection.

Compiling Hello World

The Hello World source code files should be saved in the new

j2me\src\greeting directory as HelloWorld.java. Next, you’ll need to

compile the HelloWorld MIDlet.

Compiling a MIDlet is a two-step process. The first step is to use

the Java compiler to transform the source file into a class file. The second

step is to preverify the class file, as described previously in this chapter.

The preverification generates a modified class file.

Make j2me\src\greeting the current directory, and then enter the

following command at the command line. The d: drive is used in this

example. You can replace the d: with the drive letter that is appropriate for

your file structure.

javac -d d:\j2me\tmp_classes -target 1.1 -bootclasspath

d:\j2me\midp1.0.3fcs\classes HelloWorld.java

The boot classpath option must be used when compiling a MIDlet.

The boot classpath option points to the startup class files commonly

referred to as the Java bootstrap files.

The startup classes are MIDP classes. If you fail to use the

bootclasspath option, the compiler uses JDK classes instead of the MIDP

classes. The compiler produces a file called HelloWorld.class in the

j2me\tmp_classes\greeting directory. The greeting directory is created

because of the package greeting declaration in the source code. The

J2SDK 1.4 compiler outputs class files for JVM 1.2.

However, the pre verification expects classes for JVM 1.1.

Therefore, you need to specify JVM 1.1 in the target option so the

compiler generates classes for the JVM 1.1.

Author: Dr.P.Thiyagarajan, Dept. of Computer Science, Central University of

Tamil Nadu, Thiruvarur – 610 005.

151

Next, you’ll need to pre verify the HelloWorld.class that was

generated by the compiler. Make sure that j2me\src\greeting is the current

directory and enter the following command:

preverify -d d:\j2me\classes -classpath d:\j2me\midp1.0.3fcs\classes

d:\j2me\tmp_classes

You must use two preverify options. The -d option places the class

file within the tmp_classes directory. The second option is -classpath,

which points to the location of the library classes that come with the

MIDP. Preverification files are contained in the midp1.0.3fcs\classes

directory. The output of the javac compiler is in the tmp_classes directory.

You can exclude the -classpath option if the CLASSPATH environment

variable points

to the d:\j2me\midp1.0.3fcs\classes directory. In this case, you simply

invoke the preverify using:

preverify -d d:\j2me\classes d:\j2me\tmp_classes

A word of caution: the preverifier overwrites the HelloWorld.class

file generated by the compiler if the directory specified in the -d option is

the same directory that contains the HelloWorld.class file. Replacing the

HelloWorld.class file isn’t a problem because the post-preverified

HelloWorld.class is the file used to invoke the class.

Running Hello World

A MIDlet should be tested in an emulator before being downloaded

to a small computing device. An emulator is software that simulates how a

MIDlet will run in a small computing device. Once you’re satisfied that a

MIDlet is operating properly, you can deploy the MIDlet as part of a

MIDlet suite.

There are two ways to run a MIDlet. These are either by invoking

the MIDlet class or by creating a JAR file, then running the MIDlet from

the JAR file. Let’s begin by running the MIDlet class without the need of a

JAR file. Make sure that j2me\src\ greeting is the current directory, and

then enter the following command. Figure 4-7 illustrates how the MIDlet

appears in the emulator. Click the right telephone handset icon to close the

MIDlet.

midp -classpath d:\j2me\classes greeting.HelloWorld

Deploying Hello World

Author: Dr.P.Thiyagarajan, Dept. of Computer Science, Central University of

Tamil Nadu, Thiruvarur – 610 005.

152

A MIDlet should be placed in a MIDlet suite after testing is

completed. The MIDlet suite is then packaged into a JAR file along with

other related files for downloading to a small computing device. This

process is commonly referred to as packaging.

In the HelloWorld example, the MIDlet suite contains one MIDlet,

which is the HelloWorld.class. Before packaging the MIDlet into a JAR

file, you’ll need to use an editor to create the manifest file shown in

Listing 4-5. The manifest describes the JAR file. The manifest file should

be saved as manifest.txt in the j2me\src\greeting directory. Notice that the

MIDlet description within the manifest file contains a graphic call,

/greeting/mylogo.png, that is associated with the HelloWorld MIDlet.

Figure 4-7 The HelloWorld MIDlet running in the emulator

Any PNG-formatted image file can be used in place of

mylogo.png. However, all image files must be in the PNG format. You can

also remove references to an image file by replacing the name of the

image file with a space, such as:

MIDlet-1: HelloWorld, , greeting.HelloWorld

MIDlet-Name: Hello World

MIDlet-Version: 1.0

MIDlet-Vendor: Jim

MIDlet-1: HelloWorld, /greeting/myLogo.png, greeting.HelloWorld

MicroEdition-Configuration: CLDC-1.0

MicroEdition-Profile: MIDP-1.0

Listing 4-5 The Manifest file for Helloworld

Author: Dr.P.Thiyagarajan, Dept. of Computer Science, Central University of

Tamil Nadu, Thiruvarur – 610 005.

153

You can create the JAR file once the manifest.txt file is saved in

the j2me\src\ greeting directory. Make sure the j2me\src\greeting directory

is the current directory, and then create the JAR file by entering the

following command:

jar -cfvm d:\j2me\midlets\HelloWorld.jar manifest.txt -C d:\j2me\classes

greeting

The final piece of the Hello World package is a JAD file. Create

the JAD file shown in Listing 4-6 using an editor, and save the JAD file in

the j2me/src/greeting directory.

MIDlet-Name: Hello World

MIDlet-Version: 1.0

MIDlet-Vendor: Jim

MIDlet-Description: My First MIDlet suite

MIDlet-1: HelloWorld, /greeting/myLogo.png, greeting.HelloWorld

MIDlet-Jar-URL: HelloWorld.jar

MIDlet-Jar-Size: 1428

Listing 4-6 The JAD file for HelloWorld

Copy the HelloWorld.jad file into the j2me/midlets directory, and

then make j2me/midlets the current directory. Invoke the MIDlet by

entering the following command. The image of the mobile cellular

telephone is displayed on the screen (Figure 4-7). Click the right telephone

handset icon to close the MIDlet.

midp -classpath HelloWorld.jar -Xdescriptor HelloWorld.jad

Once you are satisfied that the MIDlet suite packaged in a JAR file

is operating properly in the emulator, you can download the JAR file to a

small computing device.

The downloading process is device dependent, and therefore you

must refer to the device’s documentation or the manufacturer’s web site

for steps for downloading your JAR file.

What to Do When Your MIDlet Doesn’t Work Properly

Sometimes a MIDlet won’t compile or run properly. Although each

MIDlet is unique, there are a few common problems that cause a MIDlet

to fail. Here are areas to investigate if you experience a failure.

If the compiler, preverifier, JAR program, or emulator doesn’t run

from the command line, review the value of the PATH, CLASSPATH, and

Author: Dr.P.Thiyagarajan, Dept. of Computer Science, Central University of

Tamil Nadu, Thiruvarur – 610 005.

154

MIDP_HOME environment variables to be sure you have included the

exact path to these programs. Also make sure that the current directory

reference (a period) is included in the CLASSPATH environment variable.

Running out of environment space is a common problem on some

platforms.

This results in not enough room to store the complete value of an

environment variable such as the PATH. You can work around this

problem by creating an executable file, such as a batch file in Windows,

that sets the environment variables for J2ME components. Run this

executable file before compiling and testing your MIDlet to temporarily

reset environment variables. The environment variables return to their

original values the next time you restart your computer or log in.

Many types of errors can occur during the compiling and

packaging process. Some are syntax errors, which you’ll be able to fix

quickly by reviewing the source code. Other errors can be caused by

poorly formed command line options and arguments, such as failing to

insert a space between an option and a period when referencing the current

directory.

Another common occurrence is for a MIDlet suite to run fine in

test but fail to run after downloaded to the small computing device. In this

case, the application manager on the small computing device might reject

the MIDlet suite because the MIDlet suite cannot be run on the device. An

oversize MIDlet suite is a likely suspect. Multiple MIDlets in a MIDlet

Suite In the real world, multiple MIDlets are distributed in a single MIDlet

suite. The application manager then displays each MIDlet as a menu

option, enabling the user to run one of the MIDlets. Let’s create another

MIDlet to illustrate how to deploy a multiple MIDlet suite.

The new MIDlet is called GoodbyeWorld and is shown in Listing

4-7. Enter this code into a text editor and save the file as

GoodbyeWorld.java in the j2me\src\greeting directory. Make the

j2me\src\greeting directory the current directory. Compile both the

HelloWorld.java and GoodbyeWorld.java files by entering the following

command at the command line:

javac -d d:\j2me\tmp_classes -target 1.1 -bootclasspath

d:\j2me\midp1.0.3fcs\classes *.java

Preverify these files by entering the following command at the command

line:

preverify -d d:\j2me\classes -classpath d:\j2me\midp1.0.3fcs\classes

Author: Dr.P.Thiyagarajan, Dept. of Computer Science, Central University of

Tamil Nadu, Thiruvarur – 610 005.

155

d:\j2me\tmp_classes

package greeting;

import javax.microedition.midlet.*;

import javax.microedition.lcdui.*;

public class GoodbyeWorld extends MIDlet implements

CommandListener

{

private Display display ;

private TextBox textBox ;

private Command quitCommand;

public void startApp()

{

display = Display.getDisplay(this);

quitCommand = new Command("Quit", Command.SCREEN, 1);

textBox = new TextBox("Goodbye World", "My second MIDlet", 40, 0);

textBox .addCommand(quitCommand);

textBox .setCommandListener(this);

display .setCurrent(textBox);

}

public void pauseApp()

{

}

public void destroyApp(boolean unconditional)

{

}

public void commandAction(Command choice, Displayable displayable)

{

if (choice == quitCommand)

{

destroyApp(false);

notifyDestroyed();

}

}

}

Listing 4-7 GoodBye World Midlet Source code

Next, create a manifest.txt file, as illustrated in Listing 4-8, and

save the file in the j2me/src/greeting directory. You can modify the

manifest.txt file created in the previous example as an alternative to

writing a new manifest file by including a description of the

GoodbyeWorld class as shown in Listing 4-8.

Author: Dr.P.Thiyagarajan, Dept. of Computer Science, Central University of

Tamil Nadu, Thiruvarur – 610 005.

156

Create the HelloWorld.jar file by entering the following command.

Make sure that the j2m/src/greeting directory is the current directory.

jar -cfvm d:\j2me\midlets\HelloWorld.jar manifest.txt -C d:\j2me\classes

greeting You’ll also be required to create or modify the existing JAD file

to resemble Listing 4-9.

Save the HelloWorld.jar file in 2me/src/greeting. Next, copy the

HelloWorld.jar file and the HelloWorld.jad file to the j2me/midlets

directory.

Make the j2me/midlets directory the current directory, and then

enter the following command on the command line to run the J2ME

application:

midp -classpath HelloWorld.jar -Xdescriptor HelloWorld.jad

MIDlet-Name: Hello World

MIDlet-Version: 1.0

MIDlet-Vendor: Jim

MIDlet-1: HelloWorld, /greeting/myLogo.png, greeting.HelloWorld

MIDlet-2: GoodbyeWorld, /greeting/myLogo.png,

greeting.GoodbyeWorld

MicroEdition-Configuration: CLDC-1.0

MicroEdition-Profile: MIDP-1.0

Listing 4-8 The manifest file for HelloWorld/GoodbyeWorld MIDlet suite

MIDlet-Name: Hello World

MIDlet-Version: 1.0

MIDlet-Vendor: Jim

MIDlet-Description: My First MIDlet suite

MIDlet-1: HelloWorld, /greeting/myLogo.png, greeting.HelloWorld

MIDlet-2: GoodbyeWorld, /greeting/myLogo.png,

greeting.GoodbyeWorld

MIDlet-Jar-URL: HelloWorld.jar

MIDlet-Jar-Size: 4048

Listing 4-9 The JAD file for HelloWorld/GoodbyeWorld

The cellular phone emulator displays the image of a cellular phone

on the screen, as shown in Figure 4-8. Notice that the emulator’s

application manager displays both the HelloWorld and GoodbyeWorld

MIDlets as menu options.

Author: Dr.P.Thiyagarajan, Dept. of Computer Science, Central University of

Tamil Nadu, Thiruvarur – 610 005.

157

Click on the up or down arrow keys on the emulator to move the

cursor up and down the menu options. Click on the center button to launch

either the HelloWorld MIDlet or the GoodbyeWorld MIDlet. For example,

if you move the cursor to the GoodbyeWorld MIDlet and select the center

button on the emulator, the emulator’s application manager launches the

GoodbyeWorld MIDlet, as shown in Figure 4-9.

Click the left cellular telephone handset icon to return to the menu.

Figure 4-8 The HelloWorld MIDlet running in the emulator

Figure 4-9 The GoodbyeWorld MIDlet running in the emulator

Author: Dr.P.Thiyagarajan, Dept. of Computer Science, Central University of

Tamil Nadu, Thiruvarur – 610 005.

158

4.6 J2ME Wireless Toolkit

Building and running a J2ME application at the command line is

cumbersome, to say the least, when you are creating a robust application

consisting of several MIDlets.

Creating your application within an integrated development

environment is more productive than developing applications by entering

commands at the command line.

There are a number of popular integrated development

environments on the market designed for developing J2ME applications.

These include Borland’s JBuilder and Sun Microsystems’ Forte. Another

integrated development environment is the J2MEWireless

Toolkit that is downloadable from

java.sun.com/products/j2mewtoolkit/download.html.

The J2MEWireless Toolkit is used to develop and test J2ME

applications by selecting a few buttons from a toolbar. However, the

J2MEWireless Toolkit is a stripped-down integrated development

environment in that it does not include an editor, a full debugger, and other

amenities found in a third-party integrated development environment.

Building and Running a Project

Download the J2ME Wireless Toolkit from the Sun web site. The

Toolkit file is a self extracting executable file. Run this executable after

downloading the file, and the installation program creates all the

directories required to run the Toolkit. The installed J2MEWireless

Toolkit is placed in the WTK104 directory, although the directory might

have a variation of this name depending on the version of the Toolkit that

you download.

Ktoolbar is the executable within the directory that launches the

Toolkit. The main window is displayed (see Figure 4-10) when you run

ktoolbar. You’ll notice that the main window is sparse compared with

other integrated development environments.

Let’s create a new project by selecting the New Project button

from the toolbar. You’ll be prompted to enter a project name and class

name (see Figure 4-11). Enter Hello

Author: Dr.P.Thiyagarajan, Dept. of Computer Science, Central University of

Tamil Nadu, Thiruvarur – 610 005.

159

World as the project name and greeting.HelloWorld as the class

name, which is the name of the first MIDlet that is associated with the

project.

After selecting the Create Project button, the J2ME Wireless

Toolkit automatically creates a directory structure for the project and also

creates the manifest file and JAD file.

You can see and modify attributes of these files by selecting the

Settings option, which displays a dialog box containing a series of tabs.

The first tab displayed, Required (see Figure 4-12), contains a list of

attributes that are necessary for the manifest file and JAD

Figure 4-10. Main window of the J2ME Wireless Toolkit

Figure 4-11. Enter the project name and class name of the first MIDlet to

begin the project.

The Optional tab (see Figure 4-13) contains attributes that are

common to many projects but not required to build and deploy a J2ME

application.

Author: Dr.P.Thiyagarajan, Dept. of Computer Science, Central University of

Tamil Nadu, Thiruvarur – 610 005.

160

Figure 4-12. List of required attributes

Figure 4-13 List of optional attributes

The User Defined tab (Figure 4-14) contains optional attributes

specific to your application, as discussed previously in this chapter. This

tab will be empty until you select the Add button and insert your own

attributes. The MIDlets tab (Figure 4-15) lists MIDlets of your project.

Author: Dr.P.Thiyagarajan, Dept. of Computer Science, Central University of

Tamil Nadu, Thiruvarur – 610 005.

161

Notice that the HelloWorld MIDlet is listed in the tab, which is the MIDlet

you entered as the class name when beginning the project.

Awell-organized file structure is automatically created for your

project as a result of starting a new project.Within the WTK104 directory,

you’ll see an apps subdirectory in which the projects you create are stored.

Browse the apps subdirectory to see a subdirectory called HelloWorld,

which is the name that you gave to your project. Asubdirectory of the apps

directory is created for every project. And within the project’s

subdirectory is another set of subdirectories.

These are

 src, containing source code

 bin, containing the manifest.mf file, JAD file, and JAR file

classes, containing the compiled classes

 tmpclasses, containing the preverify classes

 res, containing image, data, and other files required by the

application

 Hello World Project

Let’s re-create the HelloWorld and GoodbyeWorld application that

you created previously in this chapter. Create a new project called Hello

World following the directions in the “Hello World J2ME Style” section.

Next, create a greeting directory beneath the src directory.

Copy the HelloWorld.java file and GoodbyeWorld.java file that

you created previously, and place those files into the project’s src\greeting

subdirectory, which is Hello World\src\greeting if you named your project

Hello World.

Author: Dr.P.Thiyagarajan, Dept. of Computer Science, Central University of

Tamil Nadu, Thiruvarur – 610 005.

162

Figur 4-14. List of user-defined optional attributes

Figure 4-15.List of MIDlets that are included in the project

Select the Settings button and the MIDlets tab. You’ll need to

insert the GoodbyeWorld.java MIDlet into the MIDlet list. Select the Add

button to display the Enter MIDlet Details dialog box (Figure 4-16), and

enter Goodbye World as the name of the MIDlet, then greeting.

GoodbyeWorld as the MIDlet class. Leave the Icon empty until you have

Author: Dr.P.Thiyagarajan, Dept. of Computer Science, Central University of

Tamil Nadu, Thiruvarur – 610 005.

163

a PNG image that you want to use with the MIDlet. Select OK to return to

the main screen.

If you choose not to create the greeting subdirectory, you’ll need to

remove the package greeting statement from the source code.

Select the Build button from the toolbar. The J2ME Wireless

Toolkit compiles, preverifies, and packages the application in one step,

which previously required three steps using the command line.

Figure 4-16. Enter the name of the MIDlet and the MIDlet class name

The Device drop-down box contains a list of emulators available for

testing your application. Select DefaultColorPhone, and then select the

Run button. The image of a color cellular telephone is displayed running

your application (see Figure 4-17).

Figure 4-174 The DefaultColorPhone emulator

Rerun your application several times, alternating among device emulators.

Figure 4-18 simulates your application running a DefaultGrayPhone, and

Figure 4-19 emulates the Motorola i85S cellular telephone.

Author: Dr.P.Thiyagarajan, Dept. of Computer Science, Central University of

Tamil Nadu, Thiruvarur – 610 005.

164

MIDlets on the Internet

The Wireless Toolkit can run MIDlets that access Internet resources by

configuring the emulator to interact with a proxy server and let you

monitor activities between the MIDlet and the Internet for debugging

purposes. You configure the emulator for the Internet by selecting Edit |

Preferences. The Network Configuration tab is used to set the port number

and server name of the proxy server. The Trace tab is used to set

preferences for monitoring the interactions between the MIDlet and the

Internet. There are four options that you can set by selecting the

appropriate check boxes (Figure 4-20).

Figure 4-18. The DefaultGrayPhone emulator

Author: Dr.P.Thiyagarajan, Dept. of Computer Science, Central University of

Tamil Nadu, Thiruvarur – 610 005.

165

Figure 4-19. The Motorola cellular telephone emulator

The Trace Garbage Collection option displays the status of objects

that include memory allocation of existing objects, the number of objects

on the heap, and the size of the largest free object. The status is displayed

whenever the garbage collector is invoked.

The Trace Class Loading option will display the name of each

class as it is loaded into the emulator. The Trace Class Method Calls

option logs object and related methods when they are called. Display

Exceptions causes all exceptions to be displayed regardless of whether

they are caught or uncaught.

The Performance, Monitor, and Storage tabs are used to fine-tune

the Wireless Toolkit for those aspects of an emulator.

Author: Dr.P.Thiyagarajan, Dept. of Computer Science, Central University of

Tamil Nadu, Thiruvarur – 610 005.

166

Figure 4-20. The Trace tab contains preferences for monitoring MIDlets

over the Internet.

4.7. Check your progress questions

1. Choose true for

a. It refers as Connected, Limited Device Configuration (CLDC)

b. 128 kb memory for running Java, 32 kb memory for runtime

memory allocation

c. It is used in Network connectivity, typically wireless, with low

bandwidth and intermittent access

d. Used where we needed restricted user interface, Low power,

typically battery powered

e. All Of Above

f. None

2. KVM is

a. Refers as K Virtual Machine is used with J2ME applications

b. It is used in Java application at place of JVM

c. Both

d. None

3. Choose correct order for "Generic" J2ME architecture

a. Profile -> Configuration-> JVM ->OS

b. Configuration -> Profile -> JVM ->OS

Author: Dr.P.Thiyagarajan, Dept. of Computer Science, Central University of

Tamil Nadu, Thiruvarur – 610 005.

167

c. Profile -> JVM -> Configuration ->OS

d. None

4. Choose correct states phases MIDlet Lifecycle

a. Active:Paused:Destroyed

b. Paused:Active:Destroyed

c. Paused:Destroyed:Active

d. None

5. Which exception will thrown by destroyApp() and startApp()

a. MIDletStateChangeException

b. MIDletDisplayException

c. MIDLetNotCreatedException

d. None

4.8 Answer to check your progress Questions.

1. e

2. a

3. a

4. b

5. a

4.9 Summary

In this unit, we examined the background of J2ME and explored

the J2ME configurations and profiles. We then took a look at setting up

your development environment for developing J2ME applications.

We covered topics such as the K virtual machine (KVM) and the

KJava profile used in conjunction with the Connected Limited Device

Configuration (CDLC) API. We also discussed Mobile Information

Device Profile (MIDP), which also uses CLDC. We also briefly discussed

the Connected Device Configuration (CDC), which is used for larger

applications.

Finally, you received hands-on experience by building a simple

HelloWorld application that allowed you to see what you can do with

J2ME.

Author: Dr.P.Thiyagarajan, Dept. of Computer Science, Central University of

Tamil Nadu, Thiruvarur – 610 005.

168

4.10. Key words
J2ME, MIDlet, Profiles Configuration, JVM, Emulator, J2ME Software

Development Kits, J2ME wireless toolkit.

4.11 Self Assessment Questions and Answers

Short Answer Questions

1. What is the difference between J2ME and J2SE?

2. Define MIDlets.

3. Write the layers of J2ME architecture.

4. Outline the various challenges faced by the developer in

developing applications for mobile and small computing devices.

5. Write about JVM.

Long Answer Questions

1. Draw and explain J2ME architecture.

2. Explain the J2ME architecture and the attributes of manifest file.

3. Explain in detail about ‘Hello world’ application using wireless

toolkit.

4. What is midlet suite? Explain the MIDlet lifecycle in detail.

4.12 Further Readings

1. Topley,K. J2ME in a Nutshell -A Desktop Quick Reference

2. https://www.javaworld.com/article/2071873/mobile-java-

beginning-j2me-building-midlets.html

Author: Dr.P.Thiyagarajan, Dept. of Computer Science, Central University of

Tamil Nadu, Thiruvarur – 610 005.

169

5. CASE STUDY

5.1 Contents of the unit
5.1 Content of the unit

5.2 Introduction

5.3 Objectives

5.4 Introduction to Google Android

5.4.1 Google Android

5.4.2 Android Application Development

5.5 Development Framework

5.5.1 SDK

5.5.2 Eclipse

5.5.3 Emulator

5.5.4 Android AVD

5.6 Project Framework

5.6.1 Apple IOS

5.6.2 RIM Blackberry

5.6.3 Samsung Bada

5.6.4 Nokia Symbian

5.6.5 Microsoft Windows Phone

5.7 Check your Progress Questions

5.8 Answers to check your progress questions.

5.9. Summary

5.10. Key words

5.11 Self Assessment Questions and answers

5.12 Further Readings

5.1 Introduction
Google acquired the Android platform in 2005 (see the sidebar

“The roots of Android,” later in this chapter) to ensure that a mobile

operating system (OS) can be created and maintained in an open platform.

Google continues to pump time and resources into the Android project.

Though devices have been available only since October 2008, over a

billion Android devices have now been activated, and more than a million

more are being added daily. In only a few years, Android has already

made a huge impact. It has never been easier for Android developers to

make money by developing apps. Android users trust Google, and because

your app resides in the Google Play Store, many users will be willing to

trust your app, too.

Author: Dr.P.Thiyagarajan, Dept. of Computer Science, Central University of

Tamil Nadu, Thiruvarur – 610 005.

170

5.3 Objectives

 To Introduce the concept Google Android.

 To learn the android application development framework.

 To learn Eclipse, Emulator, Android AVD framework.

 To acquire more knowledge in Apple IOS, RIM Blackberry,

Samsung Bada, Nokia Symbian, Microsoft Windows Phone.

 To learn about the development framework such as SDK, Android

AVD, Emulator

 To Know about Mobile OS

5.4 Introduction to Google Android

Android is everywhere. Phones. Tablets. TVs and set-top boxes

powered by Google TV. Soon, Android will be in cars and all sort of other

places as well. However, the general theme of Android devices will be

smaller screens and/or no hardware keyboard. And, by the numbers,

Android will probably be associated mostly with smartphones for the

foreseeable future. For developers, this has both benefits and drawbacks,

as described next. This chapter also describes the main components in an

Android application and the Android features that you can exploit when

developing your applications.

5.4.1 Google Android

Android is a mobile operating system based on a modified version

of the Linux kernel and other open source software, designed primarily for

touchscreen mobile devices such as smartphones and tablets. Android is

developed by a consortium of developers known as the Open Handset

Alliance, with the main contributor and commercial marketer being

Google.

Initially developed by Android Inc., which Google bought in 2005,

Android was unveiled in 2007, with the first commercial Android device

launched in September 2008. The current stable version is Android 10,

released on September 3, 2019. The core Android source code is known as

Android Open Source Project (AOSP), which is primarily licensed under

the Apache License. This has allowed variants of Android to be developed

on a range of other electronics, such as game consoles, digital cameras,

PCs and others, each with a specialized user interface. Some well known

derivatives include Android TV for televisions and Wear OS for

wearables, both developed by Google.

Author: Dr.P.Thiyagarajan, Dept. of Computer Science, Central University of

Tamil Nadu, Thiruvarur – 610 005.

171

Android's source code has been used as the basis of different

ecosystems, most notably that of Google which is associated with a suite

of proprietary software called Google Mobile Services (GMS), that

frequently comes pre-installed on said devices. This includes core apps

such as Gmail, the digital distribution platform Google Play and associated

Google Play Services development platform, and usually apps such as the

Google Chrome web browser. These apps are licensed by manufacturers

of Android devices certified under standards imposed by Google. Other

competing Android ecosystems include Amazon.com's Fire OS, or

LineageOS. Software distribution is generally offered through proprietary

application stores like Google Play Store or Samsung Galaxy Store, or

open source platforms like Aptoide or F-Droid, which utilize software

packages in the APK format.

Android has been the best-selling OS worldwide on smartphones

since 2011 and on tablets since 2013. As of May 2017, it has over two

billion monthly active users, the largest installed base of any operating

system, and as of December 2018, the Google Play Store features over 2.6

million apps.

Android Inc. was founded in Palo Alto, California, in October

2003 by Andy Rubin, Rich Miner, Nick Sears, and Chris White. Rubin

described the Android project as "tremendous potential in developing

smarter mobile devices that are more aware of its owner's location and

preferences". The early intentions of the company were to develop an

advanced operating system for digital cameras, and this was the basis of its

pitch to investors in April 2004. The company then decided that the

market for cameras was not large enough for its goals, and by five months

later it had diverted its efforts and was pitching Android as a handset

operating system that would rival Symbian and Microsoft Windows

Mobile.

Rubin had difficulty attracting investors early on, and Android was

facing eviction from its office space. Steve Perlman, a close friend of

Rubin, brought him $10,000 in cash in an envelope, and shortly thereafter

wired an undisclosed amount as seed funding.

In July 2005, Google acquired Android Inc. for at least $50

million. Its key employees, including Rubin, Miner and White, joined

Google as part of the acquisition. Not much was known about the secretive

Android at the time, with the company having provided few details other

than that it was making software for mobile phones. At Google, the team

Author: Dr.P.Thiyagarajan, Dept. of Computer Science, Central University of

Tamil Nadu, Thiruvarur – 610 005.

172

led by Rubin developed a mobile device platform powered by the Linux

kernel. Google marketed the platform to handset makers and carriers on

the promise of providing a flexible, upgradeable system. Google had

"lined up a series of hardware components and software partners and

signaled to carriers that it was open to various degrees of cooperation.

Speculation about Google's intention to enter the mobile

communications market continued to build through December 2006. An

early prototype had a close resemblance to a BlackBerry phone, with no

touchscreen and a physical QWERTY keyboard, but the arrival of 2007's

Apple iPhone meant that Android "had to go back to the drawing board".

Google later changed its Android specification documents to state that

"Touchscreens will be supported", although "the Product was designed

with the presence of discrete physical buttons as an assumption, therefore

a touchscreen cannot completely replace physical buttons". By 2008, both

Nokia and BlackBerry announced touch-based smartphones to rival the

iPhone 3G, and Android's focus eventually switched to just touchscreens.

The first commercially available smartphone running Android was the

HTC Dream, also known as T-Mobile G1, announced on September 23,

2008.

In 2010, Google launched its Nexus series of devices, a lineup in

which Google partnered with different device manufacturers to produce

new devices and introduce new Android versions. The series was

described as having "played a pivotal role in Android's history by

introducing new software iterations and hardware standards across the

board", and became known for its "bloat-free" software with "timely

updates". At its developer conference in May 2013, Google announced a

special version of the Samsung Galaxy S4, where, instead of using

Samsung's own Android customization, the phone ran "stock Android" and

was promised to receive new system updates fast.

The device would become the start of the Google Play edition

program, and was followed by other devices, including the HTC One

Google Play edition, and Moto G Google Play edition. In 2015, Ars

Technica wrote that "Earlier this week, the last of the Google Play edition

Android phones in Google's online storefront were listed as "no longer

available for sale" and that "Now they're all gone, and it looks a whole lot

like the program has wrapped up".

In June 2014, Google announced Android One, a set of "hardware

reference models" that would "allow [device makers] to easily create high-

quality phones at low costs", designed for consumers in developing

Author: Dr.P.Thiyagarajan, Dept. of Computer Science, Central University of

Tamil Nadu, Thiruvarur – 610 005.

173

countries. In September, Google announced the first set of Android One

phones for release in India. However, Recode reported in June 2015 that

the project was "a disappointment", citing "reluctant consumers and

manufacturing partners" and "misfires from the search company that has

never quite cracked hardware". Plans to relaunch Android One surfaced in

August 2015, with Africa announced as the next location for the program a

week later. A report from The Information in January 2017 stated that

Google is expanding its low-cost Android One program into the United

States, although The Verge notes that the company will presumably not

produce the actual devices itself.

Google introduced the Pixel and Pixel XL smartphones in October

2016, marketed as being the first phones made by Google, and exclusively

featured certain software features, such as the Google Assistant, before

wider rollout. The Pixel phones replaced the Nexus series, with a new

generation of Pixel phones launched in October 2017.

The following table shows the various android versions, code and

release date.

Version Code name Release date

10 10 September 3, 2019

9 Pie August 6, 2018

8.1
Oreo

December 5, 2017

8.0 August 21, 2017

7.1
Nougat

October 4, 2016

7.0 August 22, 2016

6.0 Marshmallow October 5, 2015

5.1
Lollipop

March 9, 2015

5.0 November 3, 2014

4.4 KitKat October 31, 2013

4.3

Jelly Bean

July 24, 2013

4.2 November 13, 2012

4.1 July 9, 2012

4.0 Ice Cream Sandwich October 19, 2011

2.3 Gingerbread February 9, 2011

Author: Dr.P.Thiyagarajan, Dept. of Computer Science, Central University of

Tamil Nadu, Thiruvarur – 610 005.

174

5.4.2 Android Application Development

The Android SDK gives you all the tools you need to create and

test Android applications. It comes in two parts: the base tools, and

version-specific SDKs and related add-ons. You can find the Android

developer tools on the Android Developers web site. Download the ZIP

file that is appropriate for your platform and unzip it in a logical location

on your machine—no specific path is required. Windows users also have

the option of running a self-installing EXE file.

Install the SDKs and Add-ons

Inside the tools/ directory of your Android SDK installation from the

previous step, you will see an android batch file or shell script. If you run

that, you will be presented with the Android SDK and AVD Manager,

shown in Figure 5-1.

Figure 5-1. Android SDK and AVD Manager.

At this point, you have some of the build tools, but you lack the Java files

necessary to compile an Android application. You also lack a few

additional build tools, and the files necessary to run an Android emulator.

To address this, click the Available packages option on the left to open the

screen shown in Figure 5-2.

Author: Dr.P.Thiyagarajan, Dept. of Computer Science, Central University of

Tamil Nadu, Thiruvarur – 610 005.

175

Figure 5-2. Android SDK and AVD Manager available packages

Open the Android Repository branch of the tree. After a short pause, you

will see a screen similar to Figure 5-3.

Figure 5-3. Android SDK and AVD Manager available Android packages

Check the boxes for the following items:

 “SDK Platform” for all Android SDK releases you want to

test against

 “Documentation for Android SDK” for the latest Android

SDK release

 “Samples for SDK” for the latest Android SDK release,

and perhaps for older releases if you wish

Author: Dr.P.Thiyagarajan, Dept. of Computer Science, Central University of

Tamil Nadu, Thiruvarur – 610 005.

176

Then, open the Third party Add-ons branch of the tree. After a

short pause, you will see a screen similar to Figure 5.4.

Figure 5-4. Android SDK and AVD Manager available third-party add-ons

Click the “Google Inc. add-ons” branch to open it, as shown in Figure 5-5.

Figure 5–5. Android SDK and AVD Manager available Google add-ons

Most likely, you will want to check the boxes for the “Google APIs

by Google Inc.” items that match up with the SDK versions you selected

in the Android Repository branch. The Google APIs include support for

Google Maps, both from your code and in the Android emulator. After you

have checked all the items you want to download, click the Install Selected

button, which brings up a license confirmation dialog box, shown in

Figure 5-6.

Author: Dr.P.Thiyagarajan, Dept. of Computer Science, Central University of

Tamil Nadu, Thiruvarur – 610 005.

177

Figure 5-6. Android SDK and AVD Manger license agreement screen

Review and accept the licenses if you agree with the terms, and

then click the Install button. At this point, this is a fine time to go get lunch

or dinner. Unless you have a substantial Internet connection, downloading

all of this data and unpacking it will take a fair bit of time.

Author: Dr.P.Thiyagarajan, Dept. of Computer Science, Central University of

Tamil Nadu, Thiruvarur – 610 005.

178

5.5 Development Framework

Android is a complete OS. It is not just a framework. Android is to

introduce the Storage Access Framework (SAF). The SAF makes it

modest for the users to browse and open documents, files and other images

across all of their preferred document storage providers. Its perfect easy-

to-use UI lets users browse the files and access recent in a consistent way

across apps and providers. Basically this framework is coming from the

view of template system. Template is like a predefined body to us.

Cloud or local storage services can participate in this ecosystem by

implementing a new Documents Provider that encapsulates their own

services. Client applications that need access to a provider's documents

can integrate with the SAF with just a few lines of code and also some few

concepts. The SAF (Storage Access Framework) includes the following

process that helps us:

Document Provider:

A content provider that allows a storage service such as Google

Drive to expose the records it manages. A document provider is

implemented as a subclass of the Documents Provider class. The

document-provider schema is based on a old-style file hierarchy though

how our document provider physically stores data is up to us. The Android

platform which is included to the several built-in document providers such

as Downloads, Images, and Videos.

Client app:

It is a basically a traditional app that invokes the

ACTION_OPEN_DOCUMENT and/or

ACTION_CREATE_DOCUMENT intent. It also receives the files

returned by document providers.

Picker:

The system UI that lets user’s admission documents from all

document providers which are content for client app's search criteria.

An Android APK is a collection of components. These components share a

set of resources. Databases, preferences, files pace etc. Android

component which have capability to managed lifecycle.

Some of the features offered by the SAF (Storage Access Framework) are

as given below:

 Users browse the content from all document providers, not just a

single application.

http://mrbool.com/android-development-creating-your-first-app/24309

Author: Dr.P.Thiyagarajan, Dept. of Computer Science, Central University of

Tamil Nadu, Thiruvarur – 610 005.

179

 Makes it possible for our application to have long term and

persistent access to documents maintained by a document provider.

Through this access the users can easily add, edit and delete files

on the provider.

 Supports multiple user accounts and transient roots such as USB

storage providers, it only appears if the USB device is plugged in.

Framework Activities and Tasks:

 The Process is started for a given user ID when is needed or

require.

 It is for Binding to a Service.

 It is also used for Binding to a Content Provider

 Starting an Activity

 Firing an Intent Receiver

5.5.1SDK

Now it is the time to look at how we can start developing

applications for Android OS. The Android applications are written using

Java as a programming language but it is executed using a custom virtual

machine that is called Dalvik rather than a traditional Java VM.

We will introduce the framework for starting with a technical

explanation of the Android software stack and a look at what is included in

the SDK (Software Development Kit) which is to introduction to the

Android libraries and also a look at the Dalvik virtual machine system.

Every individual Android application runs in the detached process within

its own Dalvik instance surrendering all charge for memory and process

management to the Android run time. This stops and kills processes as

required to manage resources.

Dalvik and the Android run time sits on top of a Linux kernel that

handles low-level hardware interaction including drivers and memory

monitoring and management, while other set of APIs provides access to all

of the underlying features, services and hardware.

The Android software development kit (SDK) includes everything

you need to initiate development, testing and debugging of android

applications.

http://mrbool.com/how-to-create-a-calculator-app-for-android/28100

Author: Dr.P.Thiyagarajan, Dept. of Computer Science, Central University of

Tamil Nadu, Thiruvarur – 610 005.

180

Following are included in the SDK

 The Android APIs: The core of the SDK (Software Development

Kit) is the Android API libraries that provide developer to access

to the Android stack. These are the same libraries used at Google

to create native Android applications.

 Development Tools: To turn Android source code into executable

Android applications and the SDK includes several development

tools that let us of the compile and debug our Android applications.

 The Android Emulator: The Android Emulator is a fully

communicating Android device emulator featuring several

alternative skins. Using the emulator that we can see how can our

applications will look and behave on a real Android device (That is

not a virtual concept). All Android applications run within the

Dalvik Virtual Machine so that the software emulator is a brilliant

situation. It is very vital point that devices are hardware-neutral.

This devices are also provides a better independent test

environment than any single hardware implementation.

 Full Documentation: The SDK (Software Development Kit)

includes extensive code-level reference information detailing from

exactly which we included in each package and class and also

know that the using procedure them. In addition to the code

documentation and Android’s reference certification explicates

process to get started and gives the detailed explanations of the

fundamentals behind Android development System.

 Sample Code: The Android SDK (Software Development Kit)

includes a selection of sample applications that prove some of the

possibilities available using Android the process also as simple

programs that highlight how to use individual API(Application

Programming Interfaces) features.

 Online Support: Online support is no doubt very vital point that

despite it’s relative to youth. Android has generated a vibrant

developer community. The Google Groups at groups are active

forums for the Android developers with regular input from the

Android development team at Google.

In that purpose we are using the popular Eclipse IDE. The Android

has released a special plug-in that simplifies project creation and tightly

integrates Eclipse with the Android Emulator and debugging tools.

http://mrbool.com/how-to-use-android-native-development-kit-ndk-for-native-programming/27761
http://mrbool.com/course/java-eclipse/262

Author: Dr.P.Thiyagarajan, Dept. of Computer Science, Central University of

Tamil Nadu, Thiruvarur – 610 005.

181

Concept of the Android Software Stack:

The Android software stack is composed of the elements shown in

Figure which is given below and we also described about it in detail below

it. A Linux kernel and a collection of C/C++ libraries are exposed through

an application framework that provides services to manage the run time

and applications of our development area.

Linux Kernel is Core services which includes hardware drivers, process

and memory management, network, security and power management

which are handled by a Linux kernel. The kernel (Heart of the Linux

System) also provides an abstraction layer between the hardware and the

remainder of the stack.

Libraries Running on top of the kernel here Android includes various

C/C++ core libraries such as libc and SSL, as well as:

 Media library for playback of audio and video media

 Surface manager to provide display management

 Graphics libraries that include SGL and OpenGL for 2D(Two

Dimension) and 3D(Three Dimension) graphics.

 SQLite for native database support.

 SSL and WebKit for integrated web browser and Internet security

model.

Android Run Time that makes an Android phone an Android phone

rather than a mobile.

Linux implementation is the Android run time System which is including

the core libraries and the Dalvik virtual machine, the Android run time is

the engine that powers your applications and, along with the libraries,

forms the basis for the application framework.

Core Libraries Next of them core libraries where Android development is

done in Java, Dalvik is not a Java VM. The core Android libraries provide

most of the functionality available in the core Java libraries as well as the

Android-specific libraries.

Dalvik Virtual Machine Dalvik is a register-based virtual machine that is

been optimized to ensure that a device can run multiple instances

efficiently. It trusts on the Linux kernel for threading and low-level

memory management.

Application Framework The application framework offers the classes

used to create Android applications. It also provides a generic abstraction

Author: Dr.P.Thiyagarajan, Dept. of Computer Science, Central University of

Tamil Nadu, Thiruvarur – 610 005.

182

for hardware access and manages the user interface and application

resources.

Application Layer All applications layer both native and third party layer

also are built on the application layer using the same API(Application

Programing Interface) libraries. The application layer runs within the

Android run time using the classes and services made available from the

application framework.

Figure 5-1: Concept of the Android Software Stack

5.5.2 Developing in Eclipse

The Android Development Tools (ADT) plugin for Eclipse adds

powerful extensions to the Eclipse integrated development environment. It

allows you to create and debug Android applications easier and faster. If

you use Eclipse, the ADT plugin gives you an incredible boost in

developing Android applications:

 It gives you access to other Android development tools from inside

the Eclipse IDE. For example, ADT lets you access the many

capabilities of the DDMS tool: take screenshots, manage port-

forwarding, set breakpoints, and view thread and process

information directly from Eclipse.

Author: Dr.P.Thiyagarajan, Dept. of Computer Science, Central University of

Tamil Nadu, Thiruvarur – 610 005.

183

 It provides a New Project Wizard, which helps you quickly create

and set up all of the basic files you'll need for a new Android

application.

 It automates and simplifies the process of building your Android

application.

 It provides an Android code editor that helps you write valid XML

for your Android manifest and resource files.

 It will even export your project into a signed APK, which can be

distributed to users.

To begin developing Android applications in the Eclipse IDE with

ADT, you first need to download the Eclipse IDE and then download and

install the ADT plugin. To do so, follow the steps given in Installing the

ADT Plugin.

If you are already developing applications using a version of ADT

earlier than 0.9, make sure to upgrade to the latest version before

continuing. See the guide to Updating Your ADT Plugin.

Note: This guide assumes you are using the latest version of the ADT

plugin. While most of the information covered also applies to

previous versions, if you are using an older version, you may want to

consult this document from the set of documentation included in your

SDK package (instead of the online version).

Creating an Android Project

The ADT plugin provides a New Project Wizard that you can use

to quickly create a new Android project (or a project from existing code).

To create a new project:

1. Select File > New > Project.

2. Select Android > Android Project, and click Next.

3. Select the contents for the project:

o Enter a Project Name. This will be the name of the folder where your

project is created.

o Under Contents, select Create new project in workspace. Select your

project workspace location.

o Under Target, select an Android target to be used as the project's Build

Target. The Build Target specifies which Android platform you'd like

your application built against.

Unless you know that you'll be using new APIs introduced in the latest

SDK, you should select a target with the lowest platform version

possible.

Author: Dr.P.Thiyagarajan, Dept. of Computer Science, Central University of

Tamil Nadu, Thiruvarur – 610 005.

184

Note: You can change your the Build Target for your project at any

time: Right-click the project in the Package Explorer,

select Properties, select Android and then check the desired Project

Target.

o Under Properties, fill in all necessary fields.

 Enter an Application name. This is the human-readable title for your

application — the name that will appear on the Android device.

 Enter a Package name. This is the package namespace (following the

same rules as for packages in the Java programming language) where

all your source code will reside.

 Select Create Activity (optional, of course, but common) and enter a

name for your main Activity class.

 Enter a Min SDK Version. This is an integer that indicates the

minimum API Level required to properly run your application.

Entering this here automatically sets the minSdkVersion attribute in

the <uses-sdk> of your Android Manifest file. If you're unsure of the

appropriate API Level to use, copy the API Level listed for the Build

Target you selected in the Target tab.

o

2. Click Finish.

Tip: You can also start the New Project Wizard from

the New icon in the toolbar.

Once you complete the New Project Wizard, ADT creates the

following folders and files in your new project:

src/

Includes your stub Activity Java file. All other Java files for

your application go here.

<Android Version>/ (e.g., Android 1.1/)

Includes the android.jar file that your application will build

against. This is determined by the build target that you have

chosen in the New Project Wizard.

gen/

This contains the Java files generated by ADT, such as

your R.java file and interfaces created from AIDL files.

assets/

This is empty. You can use it to store raw asset files.

res/

A folder for your application resources, such as drawable files,

layout files, string values, etc. See Application Resources.

AndroidManifest.xml

http://www.dre.vanderbilt.edu/~schmidt/android/android-4.0/out/target/common/docs/doc-comment-check/guide/topics/manifest/uses-sdk-element.html
http://www.dre.vanderbilt.edu/~schmidt/android/android-4.0/out/target/common/docs/doc-comment-check/guide/appendix/api-levels.html
http://www.dre.vanderbilt.edu/~schmidt/android/android-4.0/out/target/common/docs/doc-comment-check/guide/topics/resources/index.html

Author: Dr.P.Thiyagarajan, Dept. of Computer Science, Central University of

Tamil Nadu, Thiruvarur – 610 005.

185

The Android Manifest for your project. See The

AndroidManifest.xml File.

default.properties

This file contains project settings, such as the build target. This

files is integral to the project, as such, it should be maintained

in a Source Revision Control system. It should never be edited

manually — to edit project properties, right-click the project

folder and select "Properties".

5.5.3 Emulator
 An emulator acts as a real Android device (in most cases) and

allows us to run and test the application without having a real

device.

 The ADT plugin includes an emulator to deploy and run an

Android application.

Use the Emulator to Test Different Configurations

Create multiple AVDs that each define a different device configuration

with which your application is compatible, then launch each AVD into a

new emulator from the SDK and AVD Manager. Set the target mode in

your app's run configuration to manual, so that when you run your

application, you can select from the available virtual devices.

Running your application from Eclipse will usually require just a couple

clicks, whether you're running it on the emulator or on an attached device.

The information below describes how to get set up and run your

application from Eclipse.

Running on the emulator

Before you can run your application on the Android Emulator,

you must create an AVD.

To run (or debug) your application, select Run > Run (or Run > Debug)

from the Eclipse menu bar. The ADT plugin will automatically create a

default launch configuration for the project. Eclipse will then perform the

following:

1. Compile the project (if there have been changes since the last build).

2. Create a default launch configuration (if one does not already exist for

the project).

3. Install and start the application on an emulator (or device), based on

the Deployment Target defined by the run configuration.

By default, Android run configurations use an "automatic target" mode

for selecting a device target. For information on how automatic target

mode selects a deployment target, see Automatic and manual target

modes below.

http://www.dre.vanderbilt.edu/~schmidt/android/android-4.0/out/target/common/docs/doc-comment-check/guide/topics/manifest/manifest-intro.html
http://www.dre.vanderbilt.edu/~schmidt/android/android-4.0/out/target/common/docs/doc-comment-check/guide/topics/manifest/manifest-intro.html
http://www.dre.vanderbilt.edu/~schmidt/android/android-4.0/out/target/common/docs/doc-comment-check/guide/developing/eclipse-adt.html#AVD

Author: Dr.P.Thiyagarajan, Dept. of Computer Science, Central University of

Tamil Nadu, Thiruvarur – 610 005.

186

If debugging, the application will start in the "Waiting For Debugger"

mode. Once the debugger is attached, Eclipse will open the Debug

perspective.

To set or change the launch configuration used for your project,

use the launch configuration manager. See Creating a Run

Configuration for information.

Be certain to create multiple AVDs upon which to test your

application. You should have one AVD for each platform and screen type

with which your application is compatible. For instance, if your

application compiles against the Android 1.5 (API Level 3) platform, you

should create an AVD for each platform equal to and greater than 1.5 and

an AVD for each screen type you support, then test your application on

each one.

Running on a device

Before you can run your application on a device, you must perform some

basic setup for your device:

1. Declare your application as debuggable in your manifest

2. Enable USB Debugging on your device

3. Ensure that your development computer can detect your device

when connected via USB

Read Setting up a Device for Development for more information.

Once set up and your device is connected via USB, install your application

on the device by selecting Run > Run (or Run > Debug) from the Eclipse

menu bar.

Creating a Run Configuration

The run configuration specifies the project to run, the Activity to start, the

emulator or connected device to use, and so on. When you first run a

project as an Android Application, ADT will automatically create a run

configuration. The default run configuration will launch the default project

Activity and use automatic target mode for device selection (with no

preferred AVD). If the default settings don't suit your project, you can

customize the launch configuration or even create a new.

To create or modify a launch configuration, follow these steps as

appropriate for your Eclipse version:

1. Open the run configuration manager.

o In Eclipse 3.3 (Europa), select Run > Open Run Dialog (or Open

Debug Dialog)

o In Eclipse 3.4 (Ganymede), select Run > Run

Configurations (or Debug Configurations)

Author: Dr.P.Thiyagarajan, Dept. of Computer Science, Central University of

Tamil Nadu, Thiruvarur – 610 005.

187

2. Expand the Android Application item and create a new configuration

or open an existing one.

To create a new configuration:

1. Select Android Application and click the New launch

configuration icon above the list (or, right-click Android

Application and click New).

2. Enter a Name for your configuration.

3. In the Android tab, browse and select the project you'd like to run with

the configuration.

o

To open an existing configuration, select the configuration name from the

list nested below Android Application.

3. Adjust your desired launch configuration settings.

In the Target tab, consider whether you'd like to use Manual or

Automatic mode when selecting an AVD to run your application. See

the following section on Automatic and manual target modes).

You can specify any emulator options to the Additional Emulator

Command Line Options field. For example, you could add -scale

96dpi to scale the AVD's screen to an accurate size, based on the dpi of

your computer monitor. For a full list of emulator options, see

the Android Emulator document.

Automatic and manual target modes

By default, a run configuration uses the automatic target mode

in order to select an AVD. In this mode, ADT will select an AVD

for the application in the following manner:

1. If there's a device or emulator already running and its AVD

configuration meets the requirements of the application's build

target, the application is installed and run upon it.

2. If there's more than one device or emulator running, each of which

meets the requirements of the build target, a "device chooser" is

shown to let you select which device to use.

3. If there are no devices or emulators running that meet the

requirements of the build target, ADT looks at the available AVDs.

Author: Dr.P.Thiyagarajan, Dept. of Computer Science, Central University of

Tamil Nadu, Thiruvarur – 610 005.

188

If one meets the requirements of the build target, the AVD is used

to launch a new emulator, upon which the application is installed

and run.

4. If all else fails, the application will not be run and you will see a

console error warning you that there is no existing AVD that meets

the build target requirements.

5. However, if a "preferred AVD" is selected in the run configuration,

then the application will always be deployed to that AVD. If it's

not already running, then a new emulator will be launched.

6. If your run configuration uses manual mode, then the "device

chooser" is presented every time that your application is run, so

that you can select which AVD to use.

Signing your Applications

As you begin developing Android applications, understand that all

Android applications must be digitally signed before the system will install

them on an emulator or an actual device. There are two ways to do this:

with a debug key (for immediate testing on an emulator or development

device) or with a private key (for application distribution).

The ADT plugin helps you get started quickly by signing your .apk

files with a debug key, prior to installing them on an emulator or

development device. This means that you can quickly run your application

from Eclipse without having to generate your own private key. No specific

action on your part is needed, provided ADT has access to

Keytool.However, please note that if you intend to publish your

application, you must sign the application with your own private key,

rather than the debug key generated by the SDK tools.

Please read Signing Your Applications, which provides a thorough

guide to application signing on Android and what it means to you as an

Android application developer. The document also includes a guide to

exporting and signing your application with the ADT's Export Wizard.

Author: Dr.P.Thiyagarajan, Dept. of Computer Science, Central University of

Tamil Nadu, Thiruvarur – 610 005.

189

Working with Library Projects

Library project example code

The SDK includes an example application called TicTacToeMain

that shows how a dependent application can use code and resources from

an Android Library project. The TicTacToeMain application uses code

and resources from an example library project called TicTacToeLib.

To download the sample applications and run them as projects in

your environment, use the Android SDK and AVD Manager to download

the "Samples for SDK API 8" component into your SDK.

For more information and to browse the code of the samples, see

the TicTacToeMain application.

An Android library project is a development project that holds

shared Android source code and resources. Other Android application

projects can reference the library project and, at build time, include its

compiled sources in their .apk files. Multiple application projects can

reference the same library project and any single application project can

reference multiple library projects.

If you have source code and resources that are common to multiple

application projects, you can move them to a library project so that it is

easier to maintain across applications and versions.

Here are some common scenarios in which you could make use of

library projects:

 If you are developing multiple related applications that use some of the

same components, you could move the redundant components out of

their respective application projects and create a single, reuseable set

of the same components in a library project.

 If you are creating an application that exists in both free and paid

versions, you could move the part of the application that is common to

both versions into a library project. The two dependent projects, with

their different package names, will reference the library project and

provide only the difference between the two application versions.

Structurally, a library project is similar to a standard Android

application project. For example, it includes a manifest file at the project

root, as well as src/, res/ and similar directories. The project can contain the

same types of source code and resources as a standard Android project,

stored in the same way. For example, source code in the library project can

access its own resources through its R class.

Author: Dr.P.Thiyagarajan, Dept. of Computer Science, Central University of

Tamil Nadu, Thiruvarur – 610 005.

190

However, a library project differs from an standard Android

application project in that you cannot compile it directly to its own .apk or

run it on the Android platform. Similarly, you cannot export the library

project to a self-contained JAR file, as you would do for a true library.

Instead, you must compile the library indirectly, by referencing the library

from a dependent application's build path, then building that application.

When you build an application that depends on a library project,

the SDK tools compile the library and merge its sources with those in the

main project, then use the result to generate the .apk. In cases where a

resource ID is defined in both the application and the library, the tools

ensure that the resource declared in the application gets priority and that

the resource in the library project is not compiled into the application .apk.

This gives your application the flexibility to either use or redefine any

resource behaviors or values that are defined in any library.

To organize your code further, your application can add references

to multiple library projects, then specify the relative priority of the

resources in each library. This lets you build up the resources actually used

in your application in a cumulative manner. When two libraries referenced

from an application define the same resource ID, the tools select the

resource from the library with higher priority and discard the other.

ADT lets you add references to library projects and set their

relative priority from the application project's Properties. As shown in

Figure 2, below, once you've added a reference to a library project, you

can use the Up and Down controls to change the ordering, with the library

listed at the top getting the higher priority. At build time, the libraries are

merged with the application one at a time, starting from the lowest priority

to the highest.

Note that a library project cannot itself reference another library

project and that, at build time, library projects are not merged with each

other before being merged with the application. However, note that a

library can import an external library (JAR) in the normal way.

The sections below describe how to use ADT to set up and manage

library your projects. Once you've set up your library projects and moved

code into them, you can import library classes and resources to your

application in the normal way.

Author: Dr.P.Thiyagarajan, Dept. of Computer Science, Central University of

Tamil Nadu, Thiruvarur – 610 005.

191

Development requirements

Android library projects are a build-time construct, so you can use

them to build a final application .apk that targets any API level and is

compiled against any version of the Android library.

However, to use library projects, you need to update your

development environment to use the latest tools and platforms, since older

releases of the tools and platforms do not support building with library

projects. Specifically, you need to download and install the versions listed

below:

Table 1. Minimum versions of SDK tools and plaforms on which you

can develop library projects.

Component Minimum Version

SDK Tools r6 (or higher)

Android 2.2 platform r1 (or higher)

Android 2.1 platform r2 (or higher)

Android 2.0.1 platform not supported

Android 2.0 platform not supported

Android 1.6 platform r3 (or higher)

Android 1.5 platform r4 (or higher)

ADT Plugin 0.9.7 (or higher)

You can download the tools and platforms using the Android SDK

and AVD Manager, as described in Adding SDK Components. To install

or update ADT, use the Eclipse Updater as described in ADT Plugin for

Eclipse.

Setting up a library project

A library project is a standard Android project, so you can create a

new one in the same way as you would a new application project.

Specifically, you can use the New Project Wizard, as described in Creating

an Android Project, above.

When you are creating the library project, you can select any

application name, package, and set other fields as needed, as shown in the

diagram below. Click Finish to create the project in the workspace.

Author: Dr.P.Thiyagarajan, Dept. of Computer Science, Central University of

Tamil Nadu, Thiruvarur – 610 005.

192

Next, set the project's Properties to indicate that it is a library

project:

1. In the Package Explorer, right-click the library project and

select Properties.

2. In the Properties window, select the "Android" properties group at

left and locate the Library properties at right.

3. Select the "is Library" checkbox and click Apply.

4. Click OK to close the Properties window.

5. The new project is now marked as a library project. You can begin

moving source code and resources into it, as described in the

sections below.

6. You can also convert an existing application project into a library.

To do so, simply open the Properties for the project and select the

"is Library" checkbox. Other application projects can now

reference the existing project as a library project.

Figure 5-2. Marking a project as an Android library project.

Author: Dr.P.Thiyagarajan, Dept. of Computer Science, Central University of

Tamil Nadu, Thiruvarur – 610 005.

193

Creating the manifest file

A library project's manifest file must declare all of the shared

components that it includes, just as would a standard Android application.

For example, the TicTacToeLib example library project declares the

Activity GameActivity:

<manifest>

 ...

 <application>

 ...

 <activity android:name="GameActivity" />

 ...

 </application>

</manifest>

Referencing a library project from an application

If you are developing an application and want to include the shared code

or resources from a library project, you can do so easily by adding a

reference to the library project in the application project's Properties.

To add a reference to a library project, follow these steps:

1. In the Package Explorer, right-click the dependent project and

select Properties.

2. In the Properties window, select the "Android" properties group at

left and locate the Library properties at right.

3. Click Add to open the Project Selection dialog.

4. From the list of available library projects, select a project and

click OK.

5. When the dialog closes, click Apply in the Properties window.

6. Click OK to close the Properties window.

7. As soon as the Properties dialog closes, Eclipse rebuilds the

project, including the contents of the library project.

8. The figure below shows the Properties dialog that lets you add

library references and move them up and down in priority.

Author: Dr.P.Thiyagarajan, Dept. of Computer Science, Central University of

Tamil Nadu, Thiruvarur – 610 005.

194

Figure 5-3. Adding a reference to a library project in the properties of an

application project.

If you are adding references to multiple libraries, note that you can

set their relative priority (and merge order) by selecting a library and using

the Up and Down controls. The tools merge the referenced libraries with

your application starting from lowest priority (bottom of the list) to highest

(top of the list). If more than one library defines the same resource ID, the

tools select the resource from the library with higher priority. The

application itself has highest priority and its resources are always used in

preference to identical resource IDs defined in libraries.

Declaring library components in the the manifest file

In the manifest file of the application project, you must add

declarations of all components that the application will use that are

imported from a library project. For example, you must declare

any <activity>, <service>, <receiver>, <provider>, and so on, as well

as <permission>, <uses-library>, and similar elements.

Declarations should reference the library components by their fully-

qualified package names, where appropriate.

For example, the TicTacToeMain example application declares the

library Activity GameActivity like this:

http://www.dre.vanderbilt.edu/~schmidt/android/android-4.0/out/target/common/docs/doc-comment-check/resources/samples/TicTacToeMain/AndroidManifest.html

Author: Dr.P.Thiyagarajan, Dept. of Computer Science, Central University of

Tamil Nadu, Thiruvarur – 610 005.

195

<manifest>

 ...

 <application>

 ...

 <activity

android:name="com.example.android.tictactoe.library.GameActivity"

/>

 ...

 </application>

</manifest>

Development considerations

As you develop your library project and dependent applications,

keep the points listed below in mind.

Resource conflicts
Since the tools merge the resources of a library project with those

of a dependent application project, a given resource ID might be defined in

both projects. In this case, the tools select the resource from the

application, or the library with highest priority, and discard the other

resource. As you develop your applications, be aware that common

resource IDs are likely to be defined in more than one project and will be

merged, with the resource from the application or highest-priority library

taking precedence.

Using prefixes to avoid resource conflicts
To avoid resource conflicts for common resource IDs, consider

using a prefix or other consistent naming scheme that is unique to the

project (or is unique across all projects).

No export of library project to JAR
A library cannot be distributed as a binary file (such as a jar file).

This is because the library project is compiled by the main project to use

the correct resource IDs.

A library project can include a JAR library
You can develop a library project that itself includes a JAR library,

however you need to manually edit the dependent application project's

build path and add a path to the JAR file.

Author: Dr.P.Thiyagarajan, Dept. of Computer Science, Central University of

Tamil Nadu, Thiruvarur – 610 005.

196

A library project can depend on an external JAR library
You can develop a library project that depends on an external

library (for example, the Maps external library). In this case, the dependent

application must build against a target that includes the external library

(for example, the Google APIs Add-On). Note also that both the library

project and the dependent application must declare the external library

their manifest files, in a <uses-library> element.

Library project can not include raw assets
The tools do not support the use of raw asset files in a library

project. Any asset resources used by an application must be stored in

the assets/ directory of the application project itself.

Targeting different Android platform versions in library project and

application project
A library is compiled as part of the dependent application project,

so the API used in the library project must be compatible with the version

of the Android library used to compile the application project. In general,

the library project should use an API level that is the same as — or lower

than — that used by the application. If the library project uses an API level

that is higher than that of the application, the application project will fail to

compile. It is perfectly acceptable to have a library that uses the Android

1.5 API (API level 3) and that is used in an Android 1.6 (API level 4) or

Android 2.1 (API level 7) project, for instance.

No restriction on library package name
There is no requirement for the package name of a library to be the

same as that of applications that use it.

Multiple R classes in gen/ folder of application project
When you build the dependent application project, the code of any

libraries is compiled and merged to the application project. Each library

has its own R class, named according to the library's package name.

The R class generated from the resources of the main project and of the

library is created in all the packages that are needed including the main

project’s package and the libraries’ packages.

Testing a library project
There are two recommended ways of setting up testing on code and

resources in a library project:

1. You can set up a test project that instruments an application project

that depends on the library project. You can then add tests to the

project for library-specific features.

http://www.dre.vanderbilt.edu/~schmidt/android/android-4.0/out/target/common/docs/doc-comment-check/guide/topics/manifest/uses-library-element.html
http://www.dre.vanderbilt.edu/~schmidt/android/android-4.0/out/target/common/docs/doc-comment-check/guide/appendix/api-levels.html
http://www.dre.vanderbilt.edu/~schmidt/android/android-4.0/out/target/common/docs/doc-comment-check/guide/developing/testing/testing_otheride.html

Author: Dr.P.Thiyagarajan, Dept. of Computer Science, Central University of

Tamil Nadu, Thiruvarur – 610 005.

197

2. You can set up a set up a standard application project that depends

on the library and put the instrumentation in that project. This lets

you create a self-contained project that contains both the

tests/instrumentations and the code to test.

Library project storage location
There are no specific requirements on where you should store a

library project, relative to a dependent application project, as long as the

application project can reference the library project by a relative link. You

can place the library project What is important is that the main project can

reference the library project through a relative link.

Migrating library projects to ADT 0.9.8

This section provides information about how to migrate a library

project created with ADT 0.9.7 to ADT 0.9.8 (or higher). The migration is

needed only if you are developing in Eclipse with ADT and assumes that

you have also upgraded to SDK Tools r7 (or higher).

The way that ADT handles library projects has changed between

ADT 0.9.7 and ADT 0.9.8. Specifically, in ADT 0.9.7, the src/ source

folder of the library was linked into the dependent application project as a

folder that had the same name as the library project. This worked because

of two restrictions on the library projects:

 The library was only able to contain a single source folder (excluding

the special gen/ source folder), and

 The source folder was required to have the name src/ and be stored at

the root of the project.

In ADT 0.9.8, both of those restrictions were removed. A library

project can have as many source folders as needed and each can have any

name. Additionally, a library project can store source folders in any

location of the project. For example, you could store sources in

a src/java/ directory. In order to support this, the name of the linked source

folders in the main project are now called <library-name>_<folder-name>

For example: MyLibrary_src/ or MyLibrary_src_java/.

Additionally, the linking process now flags those folders in order for

ADT to recognize that it created them. This will allow ADT to

automatically migrate the project to new versions of ADT, should they

contain changes to the handling of library projects. ADT 0.9.7 did not flag

the linked source folders, so ADT 0.9.8 cannot be sure whether the old

linked folders can be removed safely. After upgrading ADT to 0.9.8, you

Author: Dr.P.Thiyagarajan, Dept. of Computer Science, Central University of

Tamil Nadu, Thiruvarur – 610 005.

198

will need to remove the old linked folders manually in a simple two-step

process, as described below.

Before you begin, make sure to create a backup copy of your

application or save the latest version to your code version control system.

This ensures that you will be able to easily revert the migration changes in

case there is a problem in your environment.

When you first upgrade to ADT 0.9.8, your main project will look as

shown below, with two linked folders (in this

example, MyLibrary and MyLibrary_src — both of which link to MyLibrary/src.

Eclipse shows an error on one of them because they are duplicate links to a

single class.

To fix the error, remove the linked folder that does not contain

the _src suffix.

1. Right click the folder that you want to remove (in this case,

the MyLibrary folder) and choose Build Path > Remove from Build

Path, as shown below.

Author: Dr.P.Thiyagarajan, Dept. of Computer Science, Central University of

Tamil Nadu, Thiruvarur – 610 005.

199

2. Next, When asked about unlinking the folder from the project, select Yes,

as shown below.

This should resolve the error and migrate your library project to the new

ADT environment.

Eclipse Tips

Executing arbitrary Java expressions in Eclipse

You can execute arbitrary code when paused at a breakpoint in

Eclipse. For example, when in a function with a String argument called

"zip", you can get information about packages and call class methods. You

can also invoke arbitrary static methods: for example,

entering android.os.Debug.startMethodTracing() will start dmTrace.

Open a code execution window, select Window > Show

View > Display from the main menu to open the Display window, a

simple text editor. Type your expression, highlight the text, and click the

'J' icon (or CTRL + SHIFT + D) to run your code. The code runs in the

Author: Dr.P.Thiyagarajan, Dept. of Computer Science, Central University of

Tamil Nadu, Thiruvarur – 610 005.

200

context of the selected thread, which must be stopped at a breakpoint or

single-step point. (If you suspend the thread manually, you have to single-

step once; this doesn't work if the thread is in Object.wait().)

If you are currently paused on a breakpoint, you can simply

highlight and execute a piece of source code by pressing CTRL + SHIFT +

D. You can highlight a block of text within the same scope by pressing

ALT +SHIFT + UP ARROW to select larger and larger enclosing blocks,

or DOWN ARROW to select smaller blocks.

Here are a few sample inputs and responses in Eclipse using the

Display window.

Input Response

zip (java.lang.String) /work/device/out/linux-x86-

debug/android/app/android_sdk.zip

zip.endsWith(".zip") (boolean) true

zip.endsWith(".jar") (boolean) false

5.5.4 Android AVD

Creating an AVD

An Android Virtual Device (AVD) is a device configuration for the

emulator that allows you to model real world devices. In order to run

an instance of the emulator, you must create an AVD.

To create an AVD from Eclipse:

1. Select Window > Android SDK and AVD Manager, or click the

Android SDK and AVD Manager icon in the Eclipse toolbar.

2. In the Virtual Devices panel, you'll see a list of existing AVDs.

Click New to create a new AVD.

3. Fill in the details for the AVD.

Give it a name, a platform target, an SD card size, and a skin

(HVGA is default).

Note: Be sure to define a target for your AVD that satisfies your

application's Build Target (the AVD platform target must have an

API Level equal to or greater than the API Level that your

application compiles against).

4. Click Create AVD.

Author: Dr.P.Thiyagarajan, Dept. of Computer Science, Central University of

Tamil Nadu, Thiruvarur – 610 005.

201

Your AVD is now ready and you can either close the SDK and

AVD Manager, create more AVDs, or launch an emulator with the

AVD by selecting a device and clicking Start.

5.6 Project Framework

A framework is the base of your future application. Its usage

greatly simplifies the whole development process. Instead of writing an

application from scratch and dealing with large portions of code to make

your application work on different platforms – you use a framework.

Here’s a list of framework for mobile app development:

5.6.1 Apple IOS

iOS, which was previously called iPhone OS, is a mobile operating

system developed by Apple Inc. Its first release was in 2007, which

included iPhone and iPod Touch. iPad (1st Generation) was released in

April 2010 and iPad Mini was released in November 2012.

The iOS devices get evolved quite frequently and from experience,

we find that at least one version of iPhone and iPad is launched every year.

Now, we have iphone5 launched which has its predecessors starting from

iPhone, iPhone 3gs, iPhone 4, iPhone 4s. Similarly, iPad has evolved from

iPad (1st Generation) to iPad (4th Generation) and an additional iPad Mini

version.

The iOS SDK has evolved from 1.0 to 6.0. iOS 6.0, the latest SDK

is the only officially supported version in Xcode 4.5 and higher. We have

a rich Apple documentation and we can find which methods and libraries

can be used based on our deployment target. In the current version of

Xcode, we’ll be able to choose between deployment targets of iOS 4.3, 5.0

and 6.0.

The power of iOS can be felt with some of the following features

provided as a part of the device.

 Maps

 Siri

 Facebook and Twitter

 Multi-Touch

 Accelerometer

 GPS

 High end processor

Author: Dr.P.Thiyagarajan, Dept. of Computer Science, Central University of

Tamil Nadu, Thiruvarur – 610 005.

202

 Camera

 Safari

 Powerful APIs

 Game center

 In-App Purchase

 Reminders

 Wide Range of gestures

The number of users using iPhone/iPad has increased a great deal.

This creates the opportunity for developers to make money by creating

applications for iPhone and iPad the Apple's App Store.

For some one new to iOS, Apple has designed an application store

where the user can buy apps developed for their iOS devices. A developer

can create both free and paid apps to App Store. To develop applications

and distribute to the store, the developer will require to register with iOS

developer program which costs $99 a year and a Mac with Mountain Lion

or higher for its development with latest Xcode.

Registering as an Apple Developer

An Apple ID is most necessary if you are having any Apple device and

being a developer, you definitely need it. It's free and hence, no issues in

having one. The benefits of having an Apple account are as follows −

 Access to development tools.

 Worldwide Developers Conference (WWDC) videos.

 Can join iOS developer program teams when invited.

To register an Apple account, follow the steps given below −

Step 1 − Click the link https://developer.apple.com/programs/register/ and

select "Create Apple ID"

Author: Dr.P.Thiyagarajan, Dept. of Computer Science, Central University of

Tamil Nadu, Thiruvarur – 610 005.

203

Step 2 − Provide the necessary information, which is self explanatory as

given in the page.

Step 3 − Verify your account with your email verification and the account

becomes active.

Step 4 − Now you will be able to download the developer tools like

Xcode, which is packaged with iOS simulator and iOS SDK, and other

developer resources.

Apple iOS Developer Program

The first question that would arise to a new developer is – Why

should I register for an iOS developer program? The answer is quite

simple; Apple always focuses on providing quality applications to its user.

If there was no registration fee, there could be a possibility of junk apps

being uploaded that could cause problems for the app review team of

Apple.

The benefits of joining the iOS developer program are as follows −

 Run the apps you develop on the real iOS device.

 Distribute the apps to the app store.

 Get access to the developer previews.

The steps to join the iOS developer program are as follows −

Step 1 − To register, use the link –

(https://developer.apple.com/programs/ios/).

Author: Dr.P.Thiyagarajan, Dept. of Computer Science, Central University of

Tamil Nadu, Thiruvarur – 610 005.

204

Step 2 − Click on Enroll Now in the page that is displayed.

Step 3 − You can either sign in to your existing apple account (if you have

one) or create a new Apple ID.

Step 4 − Thereafter, you have to select between Individual and Company

accounts. Use company account if there will be more than one developer

in your team. In individual account, you can't add members.

Step 5 − After entering the personal information (for those who newly

registers), you can purchase and activate the program by paying with the

help of your credit card (only accepted mode of payment).

Step 6 − Now you will get access to developer resources by selecting the

member center option in the page.

Author: Dr.P.Thiyagarajan, Dept. of Computer Science, Central University of

Tamil Nadu, Thiruvarur – 610 005.

205

Step 7 − Here you will be able to do the following −

 Create provisioning profiles.

 Manage your team and devices.

 Managing application to app store through iTunes Connect.

 Get forum and technical support.

iOS - Xcode Installation

Step 1 − Download the latest version of Xcode from

https://developer.apple.com/downloads/

Step 2 − Double click the Xcode dmg file.

Step 3 − You will find a device mounted and opened.

https://developer.apple.com/downloads/

Author: Dr.P.Thiyagarajan, Dept. of Computer Science, Central University of

Tamil Nadu, Thiruvarur – 610 005.

206

Step 4 − There will be two items in the window that's displayed namely,

Xcode application and the Application folder's shortcut.

Step 5 − Drag the Xcode to application and it will be copied to your

applications.

Step 6 − Now Xcode will be available as a part of other applications from

which you can select and run.

You also have another option of downloading Xcode from the Mac App

store and then install following the step-by-step procedure given on the

screen.

Interface Builder

Interface builder is the tool that enables easy creation of UI

interface. You have a rich set of UI elements that is developed for use.

You just have to drag and drop into your UI view. We'll learn about

adding UI elements, creating outlets and actions for the UI elements in the

upcoming pages.

You have objects library at the right bottom that consists the entire

necessary UI element. The user interface is often referred as xibs, which is

its file extension. Each of the xibs is linked to a corresponding view

controller.

iOS Simulator

An iOS simulator actually consists of two types of devices, namely

iPhone and iPad with their different versions. iPhone versions include

iPhone (normal), iPhone Retina, iPhone 5. iPad has iPad and iPad Retina.

A screenshot of an iPhone simulator is displayed below.

Author: Dr.P.Thiyagarajan, Dept. of Computer Science, Central University of

Tamil Nadu, Thiruvarur – 610 005.

207

You can simulate location in an iOS simulator for playing around

with latitude and longitude effects of the app. You can also simulate

memory warning and in-call status in the simulator. You can use the

simulator for most purposes, however you cannot test device features like

accelerometer. So, you might always need an iOS device to test all the

scenarios of an application thoroughly

5.6.2 RIM Blackberry

Blackberry is a brand of mobile phones developed by a Canadian

telecommunication company called Research in Motion (RIM). Most of

these Blackberry phones are smart phones and are popularly known for

their ability to send and receive instant messages and push emails and

maintaining a high standard of security by encryption.

The BlackBerry Developer Zone

Author: Dr.P.Thiyagarajan, Dept. of Computer Science, Central University of

Tamil Nadu, Thiruvarur – 610 005.

208

While you’re looking at this page, you might as well sign up for a

developer account – it’s free and quick, and you’ll need a login to

download the developer tools. RIM does offer higher-level paid developer

programs with additional support and other benefits, but you can develop

and distribute applications with the free account.

Installing the Development Environment

There are two BlackBerry development environments produced by

RIM. The BlackBerry Java Development Environment (JDE), and the

BlackBerry JDE Plug-in for Eclipse. Both are very functional and have

been used by developers to produce professional applications.

The JDE has been around longer and is a bit more mature, but

almost everything possible with the JDE can also be accomplished with

the Eclipse Plug-in. The Eclipse Plug-in leverages the entire Eclipse

development platform, which includes a world-class source code editor

and a lot of third-party plug-ins. Ultimately, the choice is a matter of

personal preference. We’ll explore both in the next chapter, so you’ll get a

better idea of what the real-world differences are. There are no issues with

installing both the JDE and the JDE Plug-in for Eclipse on the same

computer, so if you’re interested in exploring both and don’t mind the

extra time and effort, feel free to follow through the install instructions for

both later in this.

Author: Dr.P.Thiyagarajan, Dept. of Computer Science, Central University of

Tamil Nadu, Thiruvarur – 610 005.

209

After deciding between the JDE and the JDE Plug-in, you’ll need

to decide on a JDE version. Each version of the JDE (or each version of

the component pack for the Eclipse Plug-in) corresponds to a major

version of the BlackBerry operating system (OS). BlackBerry does a good

job of keeping their OS backward compatible, so something developed for

OS 4.2 generally will work the same on OS 4.3 and higher.

However, you may want to use some features that are only

available in a later OS. A safe minimum is 4.2, which covers all trackball

devices and later and is the minimum version supported by BlackBerry

App World. The one exception to all of this is the touch screen BlackBerry

Storm, which runs OS 4.7 and can be temperamental with applications

built using older versions of the JDE. You can run applications compiled

with versions of the JDE earlier than JDE v4.7 on the Storm, and they will

work. However, by default, they’ll be run in Compatibility Mode, meaning

the user experience won’t be ideal.

To avoid Compatibility Mode, you must compile your application

with JDE v4.7 or higher. In many cases, you can just recompile the same

source code. The bottom line is that if you’re planning on targeting the

Storm, you should be sure to get the JDE or JDE Plug-in v4.7 in addition

to any other versions. Before installing the BlackBerry development tools,

you’ll need to install the Java SE. The version or versions you will have to

install depends on the version of the BlackBerry platform you want to

target.

 For most developers, downloading Java SE JDK v6.0 is a good

choice – it will let you develop for BlackBerry Device Software version

4.2 and later, which covers all BlackBerry devices introduced in the last

three years or so. More specific information is available on the Developer

Zone

Installing the BlackBerry JDE
The JDE is a fully integrated stand-alone environment, so if you

have the appropriate version of the Java Development Kit (JDK) installed,

you just need to download the appropriate version of the JDE installer and

run it. Everything you need for BlackBerry development is included in the

JDE – from writing code using the built-in editor, to debugging using the

array of BlackBerry device simulators available, to building and signing

your application for deployment onto real devices.This shows the

BlackBerry JDE as it will appear after being launched for the first time.

Author: Dr.P.Thiyagarajan, Dept. of Computer Science, Central University of

Tamil Nadu, Thiruvarur – 610 005.

210

The BlackBerry JDE with the excellent (included) Samples workspace

loaded, and a Java source file opened for editing

5.6.3 Samsung Bada

Its Mobile operating system designed for Smart Phones by

Samsung Electronics. The name ‚bada which means ocean in Korean, was

chosen to convey the limitless variety of potential applications which can

be created using the new platform. It is one of the most developer-friendly

environments available, particularly in the area of applications using Web

services. Samsung bada also represents the fresh challenges and

opportunities available to developers, as well as the entertainment which

consumers will enjoy once the new platform is open.

Behind the bar

Samsung did a survey of consumers mobile software demands.

Results were found to be extremely encouraging for mobile application

developers. This was identified as a great opportunity for new

development. Even with the current feature set provided by the smart

phones available in market, 42% of the current smart phone users surveyed

would pay to download applications, if they could. This illustrates the

scale of the potential revenues available for developers by extending the

market of downloadable application for smart phones.

Author: Dr.P.Thiyagarajan, Dept. of Computer Science, Central University of

Tamil Nadu, Thiruvarur – 610 005.

211

As of now, Apple, RIM (Research In Motion – BlackBerry) and

Google dominate the Smart Phone OS and Mobile Application Market.

Samsung which is the second largest manufacturer of mobile phones also

want the pie of this lucrative high end mobile application market. Recent

statistics available show that smart phones will account for 16% of cell

phone market this year, which makes more room for Samsung in this

sector.

The aim of Bada platform is to make smart phone features

accessible to everyone, so that developers can reach larger audiences and

the variety and creativity of apps can be enjoyed by many. They want

consumers to have a fun and diverse mobile experience that really adds

value to their lives, by providing them with high-quality application and

mobile services.

Key Features

Extensible core functions

 A call dialer, messaging and address book, which Bada

applications can freely use. Bada will give developer the chance to access

phones’ accelerometers, tilt, weather, proximity and activity sensors, so

they can build apps that respond to tilting the phone.

Smart phones for everyone

More and more people want the rich and connected application-

experiences that are currently only available for smart phone consumers.

Samsung has developed bada to make these exclusive smart phone

experiences available to everyone

Tools
The new UI tool includes the ability to embed the AdobeFlashPlayer and

WebKit Internet Browser directly into native Bada applications. Also Bada

map Control can be used for mapping in applications. Also Eclipse and

GNU tool-chain can be used as IDE for development purpose.

Feature-rich developer platform

The new OS will deliver simple, instinctive, and innovative visual

design using Next Generation UI Framework. Bada supports motion

sensor and face detection. Also it provides mechanism to develop sensor

based and context-aware applications.

Service Oriented Features

Developers can create service-centric applications like social

networking applications for managing user profiles, location applications

for mapping etc.

Author: Dr.P.Thiyagarajan, Dept. of Computer Science, Central University of

Tamil Nadu, Thiruvarur – 610 005.

212

And all the bada handsets will have some common features:
1. 3G / Wi-Fi

2. GPS / Motion Sensor

3. WGVGA/WVGA screen

4. Multipoint touch

Bada supports third party services like Twitter and Facebook through its

APIs.

Architecture

 Bada Architecture Stack

The Architecture is made up of four layers

I. Kernel Layer

This is based on real-time Operating System or Linux kernel based

depending on hardware configuration. Speculation is that it can be linux

based system

II.Device Layer

This provides the core functions of a device platform that are

provided by OS, such as graphics and multimedia, and communication

components.

III. Service Layer

Service-centric functions that are provided by application engine

like messaging and contact management.

Author: Dr.P.Thiyagarajan, Dept. of Computer Science, Central University of

Tamil Nadu, Thiruvarur – 610 005.

213

IV. Framework Layer

Open API framework that consist of an application framework and

functions exported by underlying layers. One can create innovative

application on Bada using C++

Bada / Android

Android mobile phone industry has gradually becoming center of

attraction. Since Android supports java which has big community support.

HTC, Motorola, Sony Ericsson has now adopted Android platform in their

newly launched handsets.

Where as Bada is proprietary of Samsung so the Bada will be

inbuilt in Samsung smart phones but there are less chances of adaptation

of Bada by other Mobile Manufacturers as it is direct threat to them.

However Samsung is the second largest mobile manufacturer. This will

increase the chances of success of Bada. Also the Games developers

CAPCOM, EA Mobile, and Gameloft are supporting Bada.

To Get Started

To get started with Bada application development install SDK and

IDE. After registration one needs to become partner to download SDK and

IDE.

5.6.4 Nokia Symbian

Symbian’s predecessor, Symbian OS, was developed by Symbiant

Ltd, a partnership among PDA and smartphone manufacturers Nokia,

Ericsson, Motorola and Psion. Nokia expressed interest in acquiring the

entire company and the acquisition was completed at the end of 2008.

Targeted for smartphones, Symbian is designed to thrive in low-

power battery-based devices as well as ROM-based systems. Its kernel,

known as EKA2 (EPOC Kernel Architecture 2), features preemptive

multithreading and full memory protection. This kernel already contains a

scheduler, a memory management system and device drivers.

Applications for Symbian are normally written in C++ (using Qt)

or Symbian C++. However, applications written in Python, Java ME,

Flash Lite, Ruby and .NET can also run. These applications may then be

installed on the device using OTA (over-the-air), a mobile to PC data

cable connection, Bluetooth or a memory card.

Author: Dr.P.Thiyagarajan, Dept. of Computer Science, Central University of

Tamil Nadu, Thiruvarur – 610 005.

214

5.6.5 Microsoft Windows Phone

Developing mobile applications for Microsoft's Windows Phone

platform is a straightforward process with many tools available to

developers. In fact, the mobile team at Microsoft did a great job with the

Windows Phone platform by taking a completely unique approach in

several aspects.

Prerequisites

We're going to create a basic Windows Phone 8 application using

C#. You need to have Visual Studio installed as well as the Windows

Phone 8 SDK. If you don't have Visual Studio installed, then I recommend

you install Visual Studio Express 2012, which you can download from

Microsoft's Download Center. This will install the necessary software and

tools for Windows Phone 8 development.

By installing Visual Studio Express 2012 for Windows Phone 8, you

install the following applications and tools:

 Visual Studio Express 2012

 .Net Framework

 Windows Phone 8 SDK

 Blend For Visual Studio 2012

With the development tools installed, it's time to start creating your very

first Windows Phone 8 application.

2. Your First Application

To create a new Windows Phone project, launch Visual Studio Express

2012 and select New Project > Windows Phone App from the File menu.

Give the project a name, specify a location to save the project to, and

click OK.

Author: Dr.P.Thiyagarajan, Dept. of Computer Science, Central University of

Tamil Nadu, Thiruvarur – 610 005.

215

Make sure to select the Visual C# template from the list of Templates on

the left. Visual Studio will also ask you about the version you want to

target. We'll be targeting version 8.0.

Advertisement

3. Launch Your Application

We now have a very basic Windows Phone project to work with. Let’s

launch the application to see what it actually looks like on the Windows

Phone emulator.

To run your application in the Windows Phone emulator, click the

green play button at the top left of the window. This will launch the

emulator, install your application, and launch it in the emulator.

Author: Dr.P.Thiyagarajan, Dept. of Computer Science, Central University of

Tamil Nadu, Thiruvarur – 610 005.

216

The result is a screen similar to the one shown below. You can

choose between several emulators in Visual Studio. Feel free to play

around with the other emulators, but don't choose the Windows Phone 7

emulator as our project targets Windows Phone 8.

Author: Dr.P.Thiyagarajan, Dept. of Computer Science, Central University of

Tamil Nadu, Thiruvarur – 610 005.

217

5.7 Check your Progress Questions

1. The ______ operating system is used as the base of the Android stack.

2. When developing for the Android OS, Java bytecode is compiled into

what?

a) Java source code b) Dalvik application code

c) Dalvik byte code d) C source code

3. iOS stands for ?

a)Internetwork Operating System b)iPhone Operating System

c)Internet Operating System d)None of Them

4. Which one of the following is not an application development

framework

a)SDK bB)Eclipse

c)CASE d)Android AVD

Author: Dr.P.Thiyagarajan, Dept. of Computer Science, Central University of

Tamil Nadu, Thiruvarur – 610 005.

218

5.8 Answers to check your progress questions.

1. Linux

2. c) Dalvik byte code

3. b)iPhone Operating System

4. c)CASE

5.9 Summary

Smart Phones has changed the life of everyone. Along with other

features, an App in Smart Phones allows to do almost everything, from

playing games to do business. Before your apps are ready for their official

release to the public, they should be thoroughly tested and verified in as

many devices and software configurations as possible. With the gigantic

number of Android devices available out there, this requirement for

hardware testing is almost unrealistic, especially for independent

developers with limited financial resources. Therefore, using the SDK and

AVD managers to create and emulate some of the most popular devices

becomes one of the most affordable approaches.

SDK Manager also will offer you the opportunity to preview the

most recent features before they even exist on any physical devices. AVD

Manager then allows you to configure virtual devices to resemble the

software and hardware combinations for those devices already in the

market. While the smart phone contains advanced features which is based

on the operating system that allows to run software applications.

The most common mobile Operating Systems (OS) used by

modern smartphones include Google's Android, Apple's iOS, Nokia's

Symbian, RIM's BlackBerry OS, Samsung's Bada, Microsoft's Windows

Phone. Such operating systems can be installed on different phone models,

and they can receive multiple OS software updates over its lifetime.

5.10 Key words

Google Android Application Development, SDK, Eclipse, Emulator,

Android AVD, Apple IOS, RIM Blackberry, Samsung Bada, Nokia

Symbian, Microsoft Windows Phone.

Author: Dr.P.Thiyagarajan, Dept. of Computer Science, Central University of

Tamil Nadu, Thiruvarur – 610 005.

219

5.11 Self Assessment Questions and Answers

Short Answer Questions

1. What is Google Android?

2. Define SDK.

3. Write the features of Android.

4. What is meant by Apple IOS.

5. Write about RIM Blackberry.

6. Outline the various challenges Android Application Development

framework.

Long Answer Questions

1. Elaborate the use of Software development framework (SDK).

2. Explain the following application development framework

a. SDK

b. Eclipse

c. Emulator

d. Android AVD

3. Discuss Google Android Application Development in detail

4. Explain the following Project Framework

a. Apple IOS

b. RIM Blackberry

c. Samsung Bada

d. Nokia Symbian

e. Microsoft Windows Phone

5. Explain Nokia Symbian in detail.

6. Discuss Microsoft Windows Phone.

5.12 Further readings

1. Mobile Design and Development by Brian Fling, O’Reilly Media, Inc

2009

2. J2ME: The Complete Reference, James Keogh, Tata McGrawHill

2003

3. H. Lashkari, M. Moradhaseli, Mobile operating systems and

programming: mobile communications, VDM Verlag Dr. Muller, 2011

Author: Dr.P.Thiyagarajan, Dept. of Computer Science, Central University of

Tamil Nadu, Thiruvarur – 610 005.

220

MODEL QUESTION PAPER

PART A − (10 x 2 = 20)

Answer ALL questions

1. What do we mean by mobile ecosystems?

2. List out some platforms to build mobile application.

3. Define short message service (SMS).

4. Why Informative Apps are very important in learning?

5. What is Information Architecture?

6. Mention some ways of mobile prototype.

7. What is the difference between J2ME and J2SE?

8. Write the layers of J2ME architecture.

9. Write the features of Android.

10. What is meant by Apple IOS.

PART B − (5 x 5 = 25)

Answer ALL questions

11. (a) Explain The Mobile Ecosystem with the following concepts

a) Operators

b) Networks

c) Devices

d) Platforms

e) Services

Or

(b) Discuss the application frameworks of the mobile ecosystem in

detail.

12. (a) Explain the following concepts in detail

a) Native apps

b) Hybrid apps

c) Web apps

d) Utility apps

Or

 (b) Write the working principles of Location Based Services(LBS).

13. (a) List and explain elements of mobile design.

Or

 (b) Explain the following Mobile Information Architecture.

a) Sitemaps

b) Click Streams

c) Wireframes

d) Prototyping

e) Architecture

Author: Dr.P.Thiyagarajan, Dept. of Computer Science, Central University of

Tamil Nadu, Thiruvarur – 610 005.

221

14. (a) Explain in detail about ‘Hello world’ application using wireless

toolkit.

Or

 (b) What is midlet suite? Explain the MIDlet lifecycle in detail.

15. (a) Explain Nokia Symbian in detail.

Or

 (b) Discuss Microsoft Windows Phone.

PART C − (3 x 10 = 30)

Answer any THREE questions

16. Draw the mobile ecosystem architecture and explain each component

clearly.

17. Explain the following concepts in detail

a) Enterprise app

b) Informative App

c) Utility App

d) Mobile web App

18. Discuss mobile design tools and elements of mobile design.

19. Draw and explain J2ME architecture with development and run time

environment.

20. Explain the following application development framework

a) SDK

b) Eclipse

c) Emulator

d) Android AVD

